On the uniqueness of solutions for nonlinear elliptic‐parabolic equations

被引:0
|
作者
H. Gajewski
I. V. Skrypnik
机构
[1] Weierstrass–Institute for Applied Analysis and Stochastics,
[2] Mohrenstr.39,undefined
[3] D–10117 Berlin,undefined
[4] Germany,undefined
[5] Institute for Applied Mathematics and Mechanics,undefined
[6] Rosa Luxemburg Str. 74,undefined
[7] 340114 Donetsk,undefined
[8] Ukraine,undefined
来源
关键词
Mathematics Subject Classification(2000): 35B45,35K15, 35K20, 35K65.¶Key words and phrases : Nonlinear parabolic equations, bounded solutions, uniqueness, nonstandard assumptions, degenerate type.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a priori estimates in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L^2(0,T;W^{1,2}(\Omega)) $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ L^{\infty}(Q_T) $\end{document}, existence and uniqueness of solutions to Cauchy-Dirichlet problems for elliptic-parabolic systems¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frac {\partial \sigma(u)}{\partial t} - \sum\limits_{i=1}^n \frac {\partial}{\partial x_i} \left\{\rho(u) b_i \left (t,x,\frac {\partial (u-v)}{\partial x} \right) \right\} + a (t,x,v,u) = 0,\\- \sum\limits_{i=1}^n \frac {\partial}{\partial x_i} \left[ \kappa(x) \frac{\partial v}{\partial x_i} \right ] + \sigma(u) = f (t,x), \;(t,x) \in Q_T = (0,T) \times \Omega, $\end{document}¶¶where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho(u) = \frac {\partial \sigma(u)}{\partial u} $\end{document}. Systems of such form arise as mathematical models of various applied problems, for instance, electron transport processes in semiconductors. Our basic assumption is that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \log \rho(u) $\end{document} is concave. Such assumption is natural in view of drift-diffusion models, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma $\end{document} has to be specified as a probability distribution function like a Fermi integral and u resp. v have to be interpreted as chemical resp. electrostatic potential.
引用
收藏
页码:247 / 281
页数:34
相关论文
共 50 条
  • [41] Uniqueness of renormalized solutions of elliptic-parabolic problems
    Carrillo, J
    Wittbold, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (01): : 23 - 28
  • [42] Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity
    Alarcon, Salomon
    Garcia-Melian, Jorge
    Quaas, Alexander
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 83 - 104
  • [43] On uniqueness of boundary blow-up solutions of a class of nonlinear elliptic equations
    Dong, Hongjie
    Kim, Seick
    Safonov, Mikhail
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (02) : 177 - 188
  • [44] Existence and uniqueness of solutions for Dirichlet problem of some degenerate nonlinear elliptic equations
    Cavalheiro, Albo Carlos
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2016, 19 (03) : 453 - 467
  • [45] UNIQUENESS OF FINITE TOTAL CURVATURES AND THE STRUCTURE OF RADIAL SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS
    Chern, Jann-Long
    Chen, Zhi-You
    Tang, Yong-Li
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 3211 - 3231
  • [46] UNIQUENESS OF POSITIVE SOLUTIONS FOR A CLASS OF NONLINEAR ELLIPTIC EQUATIONS WITH ROBIN BOUNDARY CONDITIONS
    Hai, D. D.
    Shivaji, Ratnasingham
    Wang, Xiao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, 24 (02) : 255 - 263
  • [47] Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity
    Salomón Alarcón
    Jorge García-Melián
    Alexander Quaas
    Journal d'Analyse Mathématique, 2012, 118 : 83 - 104
  • [48] Existence and uniqueness results for quasi-linear elliptic and parabolic equations with nonlinear boundary conditions
    Andreu, F.
    Igbida, N.
    Mazon, J. M.
    Toledo, J.
    FREE BOUNDARY PROBLEMS: THEORY AND APPLICATIONS, 2007, 154 : 11 - +
  • [49] Uniqueness of renormalized solutions for a class of parabolic equations
    Aberqi, Ahmed
    Bennouna, Jaouad
    Hammoumi, Mohamed
    RICERCHE DI MATEMATICA, 2017, 66 (02) : 629 - 644
  • [50] Backward uniqueness for solutions of linear parabolic equations
    Kukavica, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (06) : 1755 - 1760