Asymptotic Behavior of Solutions of the Dirac System with an Integrable Potential

被引:0
|
作者
Łukasz Rzepnicki
机构
[1] Nicolaus Copernicus University,Faculty of Mathematics and Computer Science
来源
Integral Equations and Operator Theory | 2021年 / 93卷
关键词
Dirac system; Spectral problem; Integrable potential; Sturm–Liouville operator; Primary 34L20; Secondary 34E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirac system on the interval [0, 1] with a spectral parameter μ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in {\mathbb {C}}$$\end{document} and a complex-valued potential with entries from Lp[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p[0,1]$$\end{document}, where 1≤p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p$$\end{document}. We study the asymptotic behavior of its solutions in a strip |Imμ|≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\mathrm{Im}\,\mu |\le d$$\end{document} for μ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \rightarrow \infty $$\end{document}. These results allow us to obtain sharp asymptotic formulas for eigenvalues and eigenfunctions of Sturm–Liouville operators associated with the aforementioned Dirac system.
引用
收藏
相关论文
共 50 条
  • [21] ASYMPTOTIC-BEHAVIOR OF THE NONOSCILLATORY SOLUTIONS OF DIFFERENTIAL-EQUATIONS WITH INTEGRABLE COEFFICIENTS
    GRAEF, JR
    SPIKES, PW
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1985, 32 (3-4): : 211 - 221
  • [22] The asymptotic behavior of solutions of the buffered bistable system
    Guo, Jong-Shenq
    Tsai, Je-Chiang
    JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (01) : 179 - 213
  • [23] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A SYSTEM OF SCHRODINGER EQUATIONS
    Carvajal, Xavier
    Gamboa, Pedro
    Necasova, Sarka
    Huy Hoang Nguyen
    Vera, Octavio
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [24] Asymptotic behavior of solutions of a periodic diffusion system
    Wu, Boying
    Qiao, Tiantian
    Sun, Jiebao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 453 - 460
  • [25] Asymptotic behavior of global solutions for a system of Petrovsky
    Ye, Yaojun
    Hou, Xianmin
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 1191 - 1193
  • [26] Asymptotic Behavior of Global Solutions for a System of Petrovsky
    Ye, Yaojun
    Zhu, Wanzhen
    Zhou, Xiaoyan
    2009 INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION, PROCEEDINGS, 2009, : 283 - 285
  • [27] The asymptotic behavior of solutions of the buffered bistable system
    Jong-Shenq Guo
    Je-Chiang Tsai
    Journal of Mathematical Biology, 2006, 53 : 179 - 213
  • [28] Refined Asymptotic Formulas for Eigenvalues and Eigenfunctions of the Dirac System with Nondifferentiable Potential
    Burlutskay, M. S.
    Kurdyumov, V. P.
    Khromov, A. P.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (03): : 22 - 30
  • [29] Analytic study on soliton solutions for a Dirac integrable equation
    Wei, Boning
    Hu, Cheng
    Guan, Xue
    Luan, Zitong
    Yao, Min
    Liu, Wenjun
    OPTIK, 2019, 183 : 869 - 874
  • [30] Asymptotic behavior of eigenfunctions and eigenvalue for Sturm-Liouville boundary problem with integrable potential
    Vinokurov, VA
    Sadovnichii, VA
    DOKLADY AKADEMII NAUK, 1998, 358 (03) : 298 - 301