Transfer of monolayer TMD WS2 and Raman study of substrate effects

被引:0
|
作者
Jerome T. Mlack
Paul Masih Das
Gopinath Danda
Yung-Chien Chou
Carl H. Naylor
Zhong Lin
Néstor Perea López
Tianyi Zhang
Mauricio Terrones
A. T. Charlie Johnson
Marija Drndić
机构
[1] University of Pennsylvania,Department of Physics and Astronomy
[2] University of Pennsylvania,Department of Electrical and Systems Engineering
[3] University of Pennsylvania,Department of Materials Science and Engineering
[4] The Pennsylvania State University,Department of Physics
[5] Center for 2-Dimensional and Layered Materials,Department of Materials Science and Engineering
[6] The Pennsylvania State University,Department of Chemistry
[7] The Pennsylvania State University,undefined
[8] The Pennsylvania State University,undefined
来源
Scientific Reports | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A facile transfer process for transition metal dichalcogenide WS2 flakes is reported and the effect of the underlying substrate on the flake properties is investigated using Raman spectroscopy. The flakes are transferred from their growth substrate using polymethyl methacrylate (PMMA) and a wet etch to allow the user to transfer the flakes to a final substrate using a microscope and micromanipulator combined with semi-transparent Kapton tape. The substrates used range from insulators such as industry standard high-k dielectric HfO2 and “green polymer” parylene-C, to conducting chemical vapor deposition (CVD) grown graphene. Raman spectroscopy is used first to confirm the material quality of the transferred flakes to the substrates and subsequently to analyze and separate the effects arising from material transfer from those arising from interactions with the substrate. We observe changes in the Raman spectra associated with the interactions between the substrates in the flakes. These interactions affect both in-plane and out-of-plane modes in different ways depending on their sources, for example strain or surface charge. These changes vary with final substrate, with the strongest effects being observed for WS2 transferred onto graphene and HfO2, demonstrating the importance of understanding substrate interaction for fabrication of future devices.
引用
收藏
相关论文
共 50 条
  • [41] Dendritic WS2 Nanocrystal-Coated Monolayer WS2 Nanosheet Heterostructures for Phototransistors
    Zhan, Li
    Shen, Jun
    Yan, Jiangbing
    Yan, Ruiyang
    Zhang, Xiaoxian
    Long, Mingsheng
    Liu, Zheng
    Wang, Xu
    Fu, Shaohua
    Zhang, Li
    Cui, Hengqing
    Zhang, Xin
    ACS APPLIED NANO MATERIALS, 2021, 4 (10) : 11097 - 11104
  • [42] The Anisotropy and Birefringence of Monolayer WS2 Semiconductor
    Santosh, R.
    Rao, U. Nageswara
    Rao, M. Jagan Mohan
    Yattirajula, Suresh Kumar
    Kumar, V.
    MICRO AND NANOELECTRONICS DEVICES, CIRCUITS AND SYSTEMS, 2023, 904 : 249 - 255
  • [43] Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate
    Xu, Lei
    Yang, Ming
    Shen, Lei
    Zhou, Jun
    Zhu, Tao
    Feng, Yuan Ping
    PHYSICAL REVIEW B, 2018, 97 (04)
  • [44] Electronic properties of WS2 monolayer films
    Klein, A
    Tiefenbacher, S
    Eyert, V
    Pettenkofer, C
    Jaegermann, W
    THIN SOLID FILMS, 2000, 380 (1-2) : 221 - 223
  • [45] Exciton Binding Energy of Monolayer WS2
    Bairen Zhu
    Xi Chen
    Xiaodong Cui
    Scientific Reports, 5
  • [46] Superlubricity of epitaxial monolayer WS2 on graphene
    Buch, Holger
    Rossi, Antonio
    Forti, Stiven
    Convertino, Domenica
    Tozzini, Valentina
    Coletti, Camilla
    NANO RESEARCH, 2018, 11 (11) : 5946 - 5956
  • [47] Modeling of the Optical Properties of Monolayer WS2
    Kim, Tae Jung
    Van Long Le
    Hoang Tung Nguyen
    Xuan Au Nguyen
    Kim, Young Dong
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (04) : 298 - 302
  • [48] Exciton Binding Energy of Monolayer WS2
    Zhu, Bairen
    Chen, Xi
    Cui, Xiaodong
    SCIENTIFIC REPORTS, 2015, 5
  • [49] Modeling of the Optical Properties of Monolayer WS2
    Tae Jung Kim
    Van Long Le
    Hoang Tung Nguyen
    Xuan Au Nguyen
    Young Dong Kim
    Journal of the Korean Physical Society, 2020, 77 : 298 - 302
  • [50] Superlubricity of epitaxial monolayer WS2 on graphene
    Holger Büch
    Antonio Rossi
    Stiven Forti
    Domenica Convertino
    Valentina Tozzini
    Camilla Coletti
    Nano Research, 2018, 11 : 5946 - 5956