Algorithms for Recognizing Restricted Interpolation over the Modal Logic S4

被引:0
|
作者
L. L. Maksimova
V. F. Yun
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
modal logic; interpolation; decidability; recognizability; nonclassical logics; amalgamation; characteristic formulas; 510.64;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the restricted interpolation property IPR in modal logics. Earlier, the decidability of IPR over the modal logic S4 was proved and a finite list was found that contains all logics that can possess IPR over S4. However, this list contains some undue logics. The present article gives examples of the logics.
引用
收藏
页码:286 / 298
页数:12
相关论文
共 50 条
  • [1] Algorithms for Recognizing Restricted Interpolation over the Modal Logic S4
    Maksimova, L. L.
    Yun, V. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (02) : 286 - 298
  • [2] Restricted interpolation over modal logic S4
    L. L. Maksimova
    Algebra and Logic, 2013, 52 : 308 - 335
  • [3] Restricted interpolation over modal logic S4
    Maksimova, L. L.
    ALGEBRA AND LOGIC, 2013, 52 (04) : 308 - 335
  • [4] FORMULAS IN MODAL LOGIC S4
    Sasaki, Katsumi
    REVIEW OF SYMBOLIC LOGIC, 2010, 3 (04): : 600 - 627
  • [5] Classification of extensions of the modal logic S4
    Maksimova, L. L.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (06) : 1064 - 1075
  • [6] Path calculus in the modal logic S4
    Norgėla S.
    Lithuanian Mathematical Journal, 2005, 45 (1) : 94 - 101
  • [7] Classification of extensions of the modal logic S4
    L. L. Maksimova
    Siberian Mathematical Journal, 2013, 54 : 1064 - 1075
  • [8] ON COMBINING INTUITIONISTIC AND S4 MODAL LOGIC
    Rasga, Joao
    Sernadas, Cristina
    BULLETIN OF THE SECTION OF LOGIC, 2024, 53 (03):
  • [9] Classical Natural Deduction for S4 Modal Logic
    Daisuke Kimura
    Yoshihiko Kakutani
    New Generation Computing, 2011, 29 : 61 - 86
  • [10] Classical Natural Deduction for S4 Modal Logic
    Kimura, Daisuke
    Kakutani, Yoshihiko
    PROGRAMMING LANGUAGES AND SYSTEMS, PROCEEDINGS, 2009, 5904 : 243 - 258