FORMULAS IN MODAL LOGIC S4

被引:0
|
作者
Sasaki, Katsumi [1 ]
机构
[1] Nanzan Univ, Fac Informat Sci & Engn, Seto 4890863, Japan
来源
REVIEW OF SYMBOLIC LOGIC | 2010年 / 3卷 / 04期
关键词
D O I
10.1017/S1755020310000043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we provide a detailed description of the mutual relation of formulas with finite propositional variables p(1), ... , p(m) in modal logic S4. Our description contains more information on S4 than those given in Shehtman (1978) and Moss (2007); however, Shehtman (1978) also treated Grzegorczyk logic and Moss (2007) treated many other normal modal logics. Specifically, we construct normal forms, which behave like the principal conjunctive normal forms in the classical propositional logic. The results include finite and effective methods to find a normal form equivalent to a given formula A by clarifying the behavior of connectives and giving a finite method to list all exact models.
引用
收藏
页码:600 / 627
页数:28
相关论文
共 50 条
  • [1] Classification of extensions of the modal logic S4
    Maksimova, L. L.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (06) : 1064 - 1075
  • [2] Path calculus in the modal logic S4
    Norgėla S.
    Lithuanian Mathematical Journal, 2005, 45 (1) : 94 - 101
  • [3] Classification of extensions of the modal logic S4
    L. L. Maksimova
    Siberian Mathematical Journal, 2013, 54 : 1064 - 1075
  • [4] ON COMBINING INTUITIONISTIC AND S4 MODAL LOGIC
    Rasga, Joao
    Sernadas, Cristina
    BULLETIN OF THE SECTION OF LOGIC, 2024, 53 (03):
  • [5] The resolution method for one reducible class of formulas of the first-order modal logic S4
    Norgela S.
    Lithuanian Mathematical Journal, 2004, 44 (4) : 386 - 394
  • [6] Restricted interpolation over modal logic S4
    L. L. Maksimova
    Algebra and Logic, 2013, 52 : 308 - 335
  • [7] Classical Natural Deduction for S4 Modal Logic
    Daisuke Kimura
    Yoshihiko Kakutani
    New Generation Computing, 2011, 29 : 61 - 86
  • [8] Restricted interpolation over modal logic S4
    Maksimova, L. L.
    ALGEBRA AND LOGIC, 2013, 52 (04) : 308 - 335
  • [9] Classical Natural Deduction for S4 Modal Logic
    Kimura, Daisuke
    Kakutani, Yoshihiko
    PROGRAMMING LANGUAGES AND SYSTEMS, PROCEEDINGS, 2009, 5904 : 243 - 258
  • [10] Classical Natural Deduction for S4 Modal Logic
    Kimura, Daisuke
    Kakutani, Yoshihiko
    NEW GENERATION COMPUTING, 2011, 29 (01) : 61 - 86