Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group SL(2,Z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$SL(2,\mathbb{Z})$$\end{document}. We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for ∑n≤xλsymif×symjg(n),∑n≤xλf(ni)λg(nj),∑n≤x|λsymif×symjg(n)|,∑n≤x|λf(ni)λg(nj)|,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad
\sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j),
\\
\sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad
\sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|,
\end{aligned}$$\end{document}
and ∑n≤xmax{|λsymif×symjg(n)|2φ,|λsymif×symjg(n+h)|2φ},\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$\end{document}
where φ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi>0$$\end{document} and h is a fixed positive integer.