On the asymptotics of coefficients of Rankin–Selberg L-functions

被引:0
|
作者
H. Lao
H. Zhu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Acta Mathematica Hungarica | 2023年 / 170卷
关键词
Rankin–Selberg ; -function; Sato–Tate conjecture; holomorphic cusp form; omega theorem; Maass cusp form; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{Z})$$\end{document}. We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for ∑n≤xλsymif×symjg(n),∑n≤xλf(ni)λg(nj),∑n≤x|λsymif×symjg(n)|,∑n≤x|λf(ni)λg(nj)|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad \sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j), \\ \sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad \sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|, \end{aligned}$$\end{document} and ∑n≤xmax{|λsymif×symjg(n)|2φ,|λsymif×symjg(n+h)|2φ},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$\end{document} where φ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi>0$$\end{document} and h is a fixed positive integer.
引用
收藏
页码:524 / 550
页数:26
相关论文
共 50 条
  • [1] ON THE ASYMPTOTICS OF COEFFICIENTS OF RANKIN-SELBERG L-FUNCTIONS
    Lao, H.
    Zhu, H.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (2) : 524 - 550
  • [2] On Li’s coefficients for the Rankin–Selberg L-functions
    Almasa Odžak
    Lejla Smajlović
    The Ramanujan Journal, 2010, 21 : 303 - 334
  • [3] On τ-Li Coefficients for Rankin-Selberg L-Functions
    Bucur, Alina
    Ernvall-Hytonen, Anne-Maria
    Odzak, Almasa
    Roditty-Gershon, Edva
    Smajlovic, Lejla
    WOMEN IN NUMBERS EUROPE: RESEARCH DIRECTIONS IN NUMBER THEORY, 2015, 2 : 167 - 190
  • [4] Exponential sums with the Dirichlet coefficients of Rankin–Selberg L-functions
    Guangshi Lü
    Qiang Ma
    Monatshefte für Mathematik, 2024, 204 : 127 - 155
  • [5] On Li's coefficients for the Rankin-Selberg L-functions
    Odzak, Almasa
    Smajlovic, Lejla
    RAMANUJAN JOURNAL, 2010, 21 (03): : 303 - 334
  • [6] On Riesz mean for the coefficients of twisted Rankin-Selberg L-functions
    Ichihara, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (01) : 81 - 100
  • [7] Mean value of Dirichlet series coefficients of Rankin–Selberg L-functions
    Huixue Lao
    Lithuanian Mathematical Journal, 2017, 57 : 351 - 358
  • [8] Exponential sums with the Dirichlet coefficients of Rankin-Selberg L-functions
    Lu, Guangshi
    Ma, Qiang
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (01): : 127 - 155
  • [9] The Central value of the Rankin–Selberg L-Functions
    Xiaoqing Li
    Geometric and Functional Analysis, 2009, 18 : 1660 - 1695
  • [10] Rankin–Selberg L-functions and “beyond endoscopy”
    Satadal Ganguly
    Ramdin Mawia
    Mathematische Zeitschrift, 2020, 296 : 175 - 184