A generalized model for the uniaxial isothermal deformation of a viscoelastic body

被引:0
|
作者
T. M. Atanackovic
机构
[1] University of Novi Sad,Faculty of Technical Sciences
来源
Acta Mechanica | 2002年 / 159卷
关键词
Dynamical System; Generalize Model; Fluid Dynamics; Weighting Factor; Explicit Form;
D O I
暂无
中图分类号
学科分类号
摘要
Using the notion of a fractional derivative we formulate a new model for a uniaxial deformation of a visco-elastic body. The basic assumption is that all derivatives σ(γ) with respect to time of the stress depend (with specified weighting factor) on all derivatives ε(γ) with respect to time of the strain (multiplied with another weighting factor), for 0≤γ≤1. In this respect our model is a generalization of the Zener model, i.e., it is a Zener fractional model with infinitely many terms. The relation between stress and strain is given in explicit form. For two specific choices of parameters the behavior of the model under suddenly applied stress (creep) and suddenly applied strain (stress relaxation) are examined.
引用
收藏
页码:77 / 86
页数:9
相关论文
共 50 条
  • [21] Phenomenological model of viscoelastic properties of rubber under uniaxial tension
    Solov'ev, M.E.
    Rauchvarger, A.B.
    Kapustin, A.A.
    Kauchuk i Rezina, 2002, (04): : 3 - 7
  • [22] INTERPRETATION OF POSTSEISMIC DEFORMATION WITH A VISCOELASTIC RELAXATION MODEL
    WAHR, J
    WYSS, M
    JOURNAL OF GEOPHYSICAL RESEARCH, 1980, 85 (NB11): : 6471 - 6477
  • [23] A phenomenological constitutive model for the viscoelastic deformation of elastomers
    Annarasa, Vinotharan
    Popov, Atanas A.
    De Focatiis, Davide S. A.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2020, 24 (04) : 463 - 479
  • [24] A phenomenological constitutive model for the viscoelastic deformation of elastomers
    Vinotharan Annarasa
    Atanas A. Popov
    Davide S. A. De Focatiis
    Mechanics of Time-Dependent Materials, 2020, 24 : 463 - 479
  • [25] A modified Zener model of a viscoelastic body
    Teodor M. Atanackovic
    Continuum Mechanics and Thermodynamics, 2002, 14 : 137 - 148
  • [26] On a distributed derivative model of a viscoelastic body
    Atanackovic, TM
    COMPTES RENDUS MECANIQUE, 2003, 331 (10): : 687 - 692
  • [27] UNCERTAINTY ANALYSIS OF A FINITE DEFORMATION VISCOELASTIC MODEL
    Miles, Paul
    Hays, Michael
    Smith, Ralph
    Oates, William S.
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2014, VOL 2, 2014,
  • [28] A modified Zener model of a viscoelastic body
    Atanackovic, TM
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2002, 14 (02) : 137 - 148
  • [29] A geometrically generalized model of isothermal peritectic transformation
    Das, A
    Manna, I
    Pabi, SK
    ZEITSCHRIFT FUR METALLKUNDE, 2000, 91 (11): : 942 - 949
  • [30] Geometrically generalized model of isothermal peritectic transformation
    Das, Amitabha
    Manna, Indranil
    Pabi, Shyamal Kumar
    Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2000, 91 (11): : 942 - 949