Separation of Spatio-Temporal Receptive Fields into Sums of Gaussian Components

被引:0
|
作者
Thomas Wennekers
机构
[1] Max Planck Institute for Mathematics in the Sciences,
来源
关键词
visual cortex; receptive fields; orientation tuning; neural field model; fitting method;
D O I
暂无
中图分类号
学科分类号
摘要
Visual cortical simple cells have been experimentally shown to reveal non-trivial spatio-temporal orientation tuning functions comprising different phases of specifically tuned enhanced and suppressed activity. A recently developed analytical method based on nonlinear neural field models suggests that such space-time responses should be approximately separable into a sum of temporally amplitude modulated Gaussian spatial components. In the present work, we investigate this possibility by means of numerical fits of sums of Gaussians to response functions observed in experiments and computer simulations. Because the theory relates each single component to a particular connectivity kernel between the underlying cell classes shaping the response, the relative contribution of feedforward and cortex-intrinsical excitatory and inhibitory feedback mechanisms to single cell tuning can be approached and quantified in experimental data.
引用
收藏
页码:27 / 38
页数:11
相关论文
共 50 条
  • [41] Dynamic Texture Recognition Using Time-Causal and Time-Recursive Spatio-Temporal Receptive Fields
    Ylva Jansson
    Tony Lindeberg
    Journal of Mathematical Imaging and Vision, 2018, 60 : 1369 - 1398
  • [42] Dynamic Texture Recognition Using Time-Causal and Time-Recursive Spatio-Temporal Receptive Fields
    Jansson, Ylva
    Lindeberg, Tony
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (09) : 1369 - 1398
  • [43] Spatio-temporal receptive field properties of cells in the rat superior colliculus
    Prevost, Francois
    Lepore, Franco
    Guillemot, Jean-Paul
    BRAIN RESEARCH, 2007, 1142 : 80 - 91
  • [44] Non-separable spatio-temporal models via transformed multivariate Gaussian Markov random fields
    Prates, Marcos O.
    Azevedo, Douglas R. M.
    MacNab, Ying C.
    Willig, Michael R.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (05) : 1116 - 1136
  • [45] The role of spatio-temporal components in egocentric and allocentric encoding
    Sbordone, Filomena Leonela
    Ruggiero, Gennaro
    Ruotolo, Francesco
    Iachini, Tina
    COGNITIVE PROCESSING, 2021, 22 (SUPPL 1) : 33 - 34
  • [46] A spatio-temporal dipole simulation of gastrointestinal magnetic fields
    Bradshaw, LA
    Myers, A
    Wikswo, JP
    Richards, WO
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (07) : 836 - 847
  • [47] Estimating spatio-temporal fields through reinforcement learning
    Padrao, Paulo
    Fuentes, Jose
    Bobadilla, Leonardo
    Smith, Ryan N.
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [48] MODELLING SPATIO-TEMPORAL FLOW CHARACTERISTICS IN GROYNE FIELDS
    Tritthart, Michael
    Liedermann, Marcel
    Habersack, Helmut
    RIVER RESEARCH AND APPLICATIONS, 2009, 25 (01) : 62 - 81
  • [49] Extremum Tracking in Sensor Fields with Spatio-temporal Correlation
    Basu, Prithwish
    Nadamani, Abhishek
    Tong, Lang
    MILITARY COMMUNICATIONS CONFERENCE, 2010 (MILCOM 2010), 2010, : 1050 - 1055
  • [50] A SPATIO-TEMPORAL ANALYSIS OF VELOCITY FIELDS IN SOLAR PHOTOSPHERE
    FRAZIER, EN
    ZEITSCHRIFT FUR ASTROPHYSIK, 1968, 68 (05): : 345 - &