Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains

被引:2
|
作者
Shuguo Lei
Peiqing Tong
机构
[1] Nanjing Normal University,Department of Physics and Institute of Theoretical Physics
[2] Nanjing Normal University,Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems
[3] Nanjing Tech University,College of Science
来源
关键词
Wigner–Yanase skew information; Quantum phase transitions; Critical spin systems;
D O I
暂无
中图分类号
学科分类号
摘要
The quantum coherence based on Wigner–Yanase skew information and its relations with quantum phase transitions (QPTs) in one-dimensional quantum spin-1/2 chains are studied. Different from those at the critical point (CP) of the Ising transition in the transverse-field XY chain, the single-spin quantum coherence and the two-spin local σz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^z$$\end{document} quantum coherence are extremal at the CP of the anisotropy transition, and the first-order derivatives of the two-spin local σx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^x$$\end{document} and σy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^y$$\end{document} quantum coherence have logarithmic divergence with the chain size. For the QPT between the gapped and gapless phases in the chain with three-spin interactions, however, no finite-size scaling behavior of the derivatives of quantum coherence is found.
引用
收藏
页码:1811 / 1825
页数:14
相关论文
共 50 条
  • [31] Multiple quantum NMR in solids as amethod of determination of Wigner-Yanase skew information
    Doronin, S., I
    Fel'dman, E. B.
    Lazarev, I. D.
    PHYSICS LETTERS A, 2021, 406
  • [32] THEORY OF SPIN-PEIERLS TRANSITION FOR ONE-DIMENSIONAL CLASSICAL AND QUANTUM CHAINS
    PENSON, KA
    HOLZ, A
    BENNEMANN, KH
    PHYSICA B & C, 1977, 86 (JAN-M): : 1135 - 1136
  • [33] Multipartite quantum nonlocality and Bell-type inequalities in an infinite-order quantum phase transition of the one-dimensional spin-1/2 XXZ chain
    Sun, Zhao-Yu
    Liu, Shuang
    Huang, Hai-Lin
    Zhang, Duo
    Wu, Yu-Yin
    Xu, Jian
    Zhan, Bi-Fu
    Cheng, Hong-Guang
    Duan, Cheng-Bo
    Wang, Bo
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [34] Negativity, entanglement witness and quantum phase transition in spin-1 Heisenberg chains
    Wang, Xiaoguang
    Gu, Shi-Jian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (35) : 10759 - 10767
  • [35] Uncertainty Relation Based on Wigner-Yanase-Dyson Skew Information with Quantum Memory
    Li, J.
    Fei, Shao-Ming
    ENTROPY, 2018, 20 (02)
  • [36] Quantum phase transitions in spin-1 compass chains
    Liu, Guang-Hua
    Kong, Long-Juan
    You, Wen-Long
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (11): : 1 - 6
  • [37] Quantum phase transitions in spin-1 compass chains
    Guang-Hua Liu
    Long-Juan Kong
    Wen-Long You
    The European Physical Journal B, 2015, 88
  • [38] Wigner-Yanase skew information-based uncertainty relations for quantum channels
    Zhang, Qing-Hua
    Fei, Shao-Ming
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [39] Topological quantum phase transition in bond-alternating spin-1/2 Heisenberg chains
    Wang, Hai Tao
    Li, Bo
    Cho, Sam Young
    PHYSICAL REVIEW B, 2013, 87 (05)
  • [40] Disorder induced quantum phase transition in random-exchange spin-1/2 chains
    Hamacher, K
    Stolze, J
    Wenzel, W
    PHYSICAL REVIEW LETTERS, 2002, 89 (12) : 1272021 - 1272024