Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains

被引:2
|
作者
Shuguo Lei
Peiqing Tong
机构
[1] Nanjing Normal University,Department of Physics and Institute of Theoretical Physics
[2] Nanjing Normal University,Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems
[3] Nanjing Tech University,College of Science
来源
关键词
Wigner–Yanase skew information; Quantum phase transitions; Critical spin systems;
D O I
暂无
中图分类号
学科分类号
摘要
The quantum coherence based on Wigner–Yanase skew information and its relations with quantum phase transitions (QPTs) in one-dimensional quantum spin-1/2 chains are studied. Different from those at the critical point (CP) of the Ising transition in the transverse-field XY chain, the single-spin quantum coherence and the two-spin local σz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^z$$\end{document} quantum coherence are extremal at the CP of the anisotropy transition, and the first-order derivatives of the two-spin local σx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^x$$\end{document} and σy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^y$$\end{document} quantum coherence have logarithmic divergence with the chain size. For the QPT between the gapped and gapless phases in the chain with three-spin interactions, however, no finite-size scaling behavior of the derivatives of quantum coherence is found.
引用
收藏
页码:1811 / 1825
页数:14
相关论文
共 50 条
  • [1] Wigner-Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains
    Lei, Shuguo
    Tong, Peiqing
    QUANTUM INFORMATION PROCESSING, 2016, 15 (04) : 1811 - 1825
  • [2] Criticality, factorization and Wigner–Yanase skew information in quantum spin chains
    W. W. Cheng
    J. X. Li
    C. J. Shan
    L. Y. Gong
    S. M. Zhao
    Quantum Information Processing, 2015, 14 : 2535 - 2549
  • [3] Criticality, factorization and Wigner-Yanase skew information in quantum spin chains
    Cheng, W. W.
    Li, J. X.
    Shan, C. J.
    Gong, L. Y.
    Zhao, S. M.
    QUANTUM INFORMATION PROCESSING, 2015, 14 (07) : 2535 - 2549
  • [4] Quantum phase transitions in matrix product states of one-dimensional spin-1/2 chains
    Zhu Jing-Min
    CHINESE PHYSICS C, 2014, 38 (12)
  • [5] Quantum phase transitions in matrix product states of one-dimensional spin-1 chains
    Zhu Jing-Min
    CHINESE PHYSICS C, 2014, 38 (10)
  • [6] Quantum phase transitions in matrix product states of one-dimensional spin-1 chains
    祝敬敏
    Chinese Physics C, 2014, (10) : 11 - 16
  • [7] Quantum phase transitions in matrix product states of one-dimensional spin-1 chains
    祝敬敏
    Chinese Physics C, 2014, 38 (10) : 11 - 16
  • [8] Quantum phase transitions in composite matrix product states of one-dimensional spin-1/2 chains
    Zhu, Jing-Min
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2015, 29 (09):
  • [9] Quantum phase transition in dimerised spin-1/2 chains
    Aparajita Das
    Sreeparna Bhadra
    Sonali Saha
    Quantum Information Processing, 2015, 14 : 4089 - 4102
  • [10] Quantum phase transition in dimerised spin-1/2 chains
    Das, Aparajita
    Bhadra, Sreeparna
    Saha, Sonali
    QUANTUM INFORMATION PROCESSING, 2015, 14 (11) : 4089 - 4102