Ruled Surfaces in Minkowski 3-space and Split Quaternion Operators

被引:0
|
作者
Selahattin Aslan
Murat Bekar
Yusuf Yaylı
机构
[1] Ankara University,Faculty of Science, Department of Mathematics
[2] Gazi University,Faculty of Education, Department of Mathematics Education
来源
关键词
Split quaternions; Ruled surfaces; Minkowski 3-space; Spherical curves in Minkowski 3-space; 2-parameter homothetic motions; 14J26; 70E15; 70E18; 11R52; 37E45; 51B20; 53A35; 70B10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define and classify split quaternion operators. Then, we show that the split quaternion product of a split quaternion operator and a curve, which lies on Lorentzian unit sphere or on hyperbolic unit sphere, parametrizes a ruled surface in the 3-dimensional Minkowski space E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_{1}^{3}$$\end{document} if the vector part of the operator is perpendicular to the position vector of the spherical curve. Moreover, the ruled surfaces are represented as 2-parameter homothetic motions in E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_{1}^{3}$$\end{document} by using semi-orthogonal matrices corresponding to the split quaternion operators. Finally, some examples are given to illustrate some applications of our main results.
引用
收藏
相关论文
共 50 条
  • [31] A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space
    Erdem Kocakuşaklı
    O. Oğulcan Tuncer
    İsmail Gök
    Yusuf Yaylı
    Advances in Applied Clifford Algebras, 2017, 27 : 1387 - 1409
  • [32] A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space
    Kocakusakli, Erdem
    Tuncer, O. Ogulcan
    Gok, Ismail
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1387 - 1409
  • [33] Kinematic Geometry of Timelike Ruled Surfaces in Minkowski 3-Space E13
    Alluhaibi, Nadia
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2022, 14 (04):
  • [34] Family of ruled surfaces generated by equiform Bishop spherical image in Minkowski 3-space
    Solouma, Emad
    Abdelkawy, Mohamed
    AIMS MATHEMATICS, 2023, 8 (02): : 4372 - 4389
  • [35] On Geometry of Equiform Smarandache Ruled Surfaces Via Equiform Frame in Minkowski 3-Space
    Solouma, Emad
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2023, 18 (01):
  • [36] A New Method for Designing Involute Trajectory Timelike Ruled Surfaces in Minkowski 3-space
    Bilici, Mustafa
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [37] SIMILAR RULED SURFACES WITH VARIABLE TRANSFORMATIONS IN MINKOWSKI 3-SPACE E-1(3)
    Onder, Mehmet
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (02): : 219 - 230
  • [38] THE TIMELIKE RULED SURFACES ACCORDING TO TYPE -2 BISHOP FRAME IN MINKOWSKI 3-SPACE
    Guler, Fatma
    JOURNAL OF SCIENCE AND ARTS, 2018, (02): : 323 - 330
  • [39] Timelike-Ruled and Developable Surfaces in Minkowski 3-Space E13
    Mofarreh, Fatemah
    FRONTIERS IN PHYSICS, 2022, 10
  • [40] CAUSTICS OF SURFACES IN THE MINKOWSKI 3-SPACE
    Tari, Farid
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (01): : 189 - 209