Ruled Surfaces in Minkowski 3-space and Split Quaternion Operators

被引:0
|
作者
Selahattin Aslan
Murat Bekar
Yusuf Yaylı
机构
[1] Ankara University,Faculty of Science, Department of Mathematics
[2] Gazi University,Faculty of Education, Department of Mathematics Education
来源
关键词
Split quaternions; Ruled surfaces; Minkowski 3-space; Spherical curves in Minkowski 3-space; 2-parameter homothetic motions; 14J26; 70E15; 70E18; 11R52; 37E45; 51B20; 53A35; 70B10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define and classify split quaternion operators. Then, we show that the split quaternion product of a split quaternion operator and a curve, which lies on Lorentzian unit sphere or on hyperbolic unit sphere, parametrizes a ruled surface in the 3-dimensional Minkowski space E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_{1}^{3}$$\end{document} if the vector part of the operator is perpendicular to the position vector of the spherical curve. Moreover, the ruled surfaces are represented as 2-parameter homothetic motions in E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_{1}^{3}$$\end{document} by using semi-orthogonal matrices corresponding to the split quaternion operators. Finally, some examples are given to illustrate some applications of our main results.
引用
收藏
相关论文
共 50 条