Nonlinear analysis of the Rayleigh-Taylor instability at the charged interface

被引:0
|
作者
A. I. Grigor’ev
D. M. Pozharitskii
机构
[1] Demidov State University,
来源
Technical Physics | 2008年 / 53卷
关键词
47.10.-g;
D O I
暂无
中图分类号
学科分类号
摘要
An asymptotic solution to the problem of analyzing the nonlinear stage of the Rayleigh-Taylor instability at the uniformly charged interface between two (conducting and insulating) immiscible ideal incompressible liquids is derived in the third order of smallness. It is found that the charge expands the range of waves experiencing instability toward shorter waves and decreases the length of the wave with a maximum growth rate. It turns out that the characteristic linear scale of interface deformation, which arises when the heavy liquid flows into the light one, decreases as the charge surface density increases in proportion to the square root of the Tonks-Frenkel parameter characterizing the stability of the interface against the distributed self-charge.
引用
收藏
页码:424 / 431
页数:7
相关论文
共 50 条
  • [21] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [22] Interface Width Effect on the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry
    Yang, Yun-Peng
    Zhang, Jing
    Li, Zhi-Yuan
    Wang, Li-Feng
    Wu, Jun-Feng
    Ye, Wun-Hua
    He, Xian-Tu
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [23] Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability
    Wang, L. F.
    Wu, J. F.
    Fan, Z. F.
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Dai, Z. S.
    Gu, J. F.
    Xue, C.
    PHYSICS OF PLASMAS, 2012, 19 (11)
  • [24] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [25] Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime
    Wang, L. F.
    Ye, W. H.
    Li, Y. J.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [26] Viscous Potential Flow Analysis of Rayleigh-Taylor Instability of Cylindrical Interface
    Asthana, Rishi
    Awasthi, Mukesh Kumar
    Agrawal, G. S.
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 769 - +
  • [27] Rayleigh-Taylor Instability of an Interface in a Nonwettable Porous Medium
    Il'ichev, A. T.
    Tsypkin, G. G.
    FLUID DYNAMICS, 2007, 42 (01) : 83 - 90
  • [28] Rayleigh-Taylor instability of a miscible interface in a confined domain
    Lyubimova, T.
    Vorobev, A.
    Prokopev, S.
    PHYSICS OF FLUIDS, 2019, 31 (01)
  • [29] Rayleigh-Taylor instability of an interface in a nonwettable porous medium
    A. T. Il’ichev
    G. G. Tsypkin
    Fluid Dynamics, 2007, 42 : 83 - 90
  • [30] Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids
    Tao, J. J.
    He, X. T.
    Ye, W. H.
    Busse, F. H.
    PHYSICAL REVIEW E, 2013, 87 (01):