Let f and g be two Hecke–Maass cusp forms of weight zero for SL2(Z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$SL_2({\mathbb {Z}})$$\end{document} with Laplacian eigenvalues 14+u2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{4}+u^2$$\end{document} and 14+v2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{4}+v^2$$\end{document}, respectively. Then both have real Fourier coefficients say, λf(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _f(n)$$\end{document} and λg(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _g(n)$$\end{document}, and we may normalize f and g so that λf(1)=1=λg(1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _f(1)=1=\lambda _g(1)$$\end{document}. In this article, we first prove that the sequence {λf(n)λg(n)}n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{\lambda _f(n)\lambda _g(n)\}_{n \in {\mathbb {N}}}$$\end{document} has infinitely many sign changes. Then we derive a bound for the first negative coefficient for the same sequence in terms of the Laplacian eigenvalues of f and g.
机构:
Henan Univ, Inst Modern Math, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R ChinaHenan Univ, Inst Modern Math, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
机构:
Weinan Normal Univ, Sch Math & Stat, Weinan 714099, Shaanxi, Peoples R China
Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R ChinaWeinan Normal Univ, Sch Math & Stat, Weinan 714099, Shaanxi, Peoples R China