The first simultaneous sign change for Fourier coefficients of Hecke–Maass forms

被引:0
|
作者
Moni Kumari
Jyoti Sengupta
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Vivekananda University,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Maass forms; Fourier coefficients; Sign changes; Primary 11F41; Secondary 11F30;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two Hecke–Maass cusp forms of weight zero for SL2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL_2({\mathbb {Z}})$$\end{document} with Laplacian eigenvalues 14+u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+u^2$$\end{document} and 14+v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+v^2$$\end{document}, respectively. Then both have real Fourier coefficients say, λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _f(n)$$\end{document} and λg(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _g(n)$$\end{document}, and we may normalize f and g so that λf(1)=1=λg(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _f(1)=1=\lambda _g(1)$$\end{document}. In this article, we first prove that the sequence {λf(n)λg(n)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _f(n)\lambda _g(n)\}_{n \in {\mathbb {N}}}$$\end{document} has infinitely many sign changes. Then we derive a bound for the first negative coefficient for the same sequence in terms of the Laplacian eigenvalues of f and g.
引用
收藏
页码:205 / 218
页数:13
相关论文
共 50 条