Analysis and Optimal Control of a Multistrain SEIR Epidemic Model with Saturated Incidence Rate and Treatment

被引:0
|
作者
Dounia Bentaleb
Sanaa Harroudi
Saida Amine
Karam Allali
机构
[1] University Hassan II of Casablanca,Laboratory of Mathematics and Applications, Faculty of Sciences and Technologies
[2] University Hassan II,ENCG of Casablanca
关键词
SEIR; Multi-strain; Saturated incidence; Treatment function; Global stability; Optimal control; MSC 92D30; MSC 34-00; MSC 34D23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the dynamic of a multi-strain SEIR model with both saturated incidence and treatment functions. Two basic reproduction numbers are extracted from the epidemic model, noted R0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0,1}$$\end{document} and R0,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0,2}$$\end{document}. Using the Lyapunov method, we investigate the global stability of the disease free equilibrium and prove that it is globally asymptotically stable when R0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0,1}$$\end{document} and R0,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0,2}$$\end{document} are less than one. Moreover, we formulate the optimal control problem, solve it, and perform some numerical simulations, to support the analytical results and test how well the proposed model may be applied in practice.
引用
收藏
页码:907 / 923
页数:16
相关论文
共 50 条
  • [31] Pulse vaccination on SEIR epidemic model with nonlinear incidence rate
    Wang, Xia
    Tao, Youde
    Song, Xinyu
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 398 - 404
  • [32] Threshold dynamics of an SEIR epidemic model with a nonlinear incidence rate and a discontinuous treatment function
    Gao, Da-peng
    Huang, Nan-jing
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [33] Threshold dynamics of an SEIR epidemic model with a nonlinear incidence rate and a discontinuous treatment function
    Da-peng Gao
    Nan-jing Huang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [34] Optimal Control of SEIR Epidemic Model Considering Nonlinear Transmission Rate and Time Delay
    Abbasi, Zohreh
    Zamani, Iman
    Mehra, Amir Hossein Amiri
    Shafieirad, Mohsen
    2021 7TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION AND AUTOMATION (ICCIA), 2021, : 1 - 5
  • [35] Complex Dynamics of an SIR Epidemic Model with Saturated Incidence Rate and Treatment
    Jana, Soovoojeet
    Nandi, Swapan Kumar
    Kar, T. K.
    ACTA BIOTHEORETICA, 2016, 64 (01) : 65 - 84
  • [36] Complex Dynamics of an SIR Epidemic Model with Saturated Incidence Rate and Treatment
    Soovoojeet Jana
    Swapan Kumar Nandi
    T. K. Kar
    Acta Biotheoretica, 2016, 64 : 65 - 84
  • [37] Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies
    Meng, Lan
    Zhu, Wei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 200 : 489 - 503
  • [38] An SEIR epidemic model's global analysis that incorporates the bi-linear incidence rate with treatment function
    Tiwari, S. K.
    Porwal, Pradeep
    Mangal, Neha
    INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2024, 4 (03)
  • [39] Optimal Control for a SIR Epidemic Model with Nonlinear Incidence Rate
    Grigorieva, E. V.
    Khailov, E. N.
    Korobeinikov, A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2016, 11 (04) : 89 - 104
  • [40] Optimal control of vaccination for an epidemic model with standard incidence rate
    Li, Li
    Zheng, Na
    Liu, Chen
    Wang, Zhen
    Jin, Zhen
    JOURNAL OF THEORETICAL BIOLOGY, 2025, 598