Curve graphs and Garside groups

被引:0
|
作者
Matthieu Calvez
Bert Wiest
机构
[1] Universidad de Santiago de Chile,Departamento de matemática y ciencia de la computación, Facultad de Ciencia
[2] Université de Rennes 1,UFR Mathématiques
来源
Geometriae Dedicata | 2017年 / 188卷
关键词
Garside groups; Braid groups; Curve complexes; Gromov-hyperbolic; 20F36; 20F65;
D O I
暂无
中图分类号
学科分类号
摘要
We present a simple construction which associates to every Garside group a metric space, called the additional length graph, on which the group acts. These spaces share important features with curve graphs: they are δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-hyperbolic, infinite, and typically locally infinite graphs. We conjecture that, apart from obvious counterexamples, additional length graphs have always infinite diameter. We prove this conjecture for the classical example of braid groups (Bn,Bn+,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B_n,B_n^{+},\varDelta )$$\end{document}; moreover, in this framework, reducible and periodic braids act elliptically, and at least some pseudo-Anosov braids act loxodromically. We conjecture that for Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, the additional length graph is actually quasi-isometric to the curve graph of the n times punctured disk.
引用
收藏
页码:195 / 213
页数:18
相关论文
共 50 条
  • [41] A Garside-theoretic approach to the reducibility problem in braid groups
    Lee, Eon-Kyung
    Lee, Sang-Jin
    JOURNAL OF ALGEBRA, 2008, 320 (02) : 783 - 820
  • [42] Garside groups have the falsification by fellow-traveller property
    Holt, Derek F.
    GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (04) : 777 - 784
  • [43] Conjugacy in Garside groups II: structure of the ultra summit set
    Birman, Joan S.
    Gebhardt, Volker
    Gonzalez-Meneses, Juan
    GROUPS GEOMETRY AND DYNAMICS, 2008, 2 (01) : 13 - 61
  • [44] Garside families and Garside germs
    Dehornoy, Patrick
    Digne, Francois
    Michel, Jean
    JOURNAL OF ALGEBRA, 2013, 380 : 109 - 145
  • [45] Groups of graphs of groups
    Byrne, David P.
    Donner, Matthew J.
    Sibley, Thomas Q.
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2013, 54 (01): : 323 - 332
  • [46] Groups of Graphs of Groups
    Byrne, D. P.
    Donner, M. J.
    CUR QUARTERLY, 2013, 34 (04) : 36 - 36
  • [47] Cyclic amalgams, HNN extensions, and Garside one-relator groups
    Picantin, Matthieu
    JOURNAL OF ALGEBRA, 2022, 607 : 437 - 465
  • [48] Curve Singularities and Graphs
    杨劲根
    Acta Mathematica Sinica,English Series, 1990, (01) : 87 - 97
  • [49] Curve Singularities and Graphs
    杨劲根
    ActaMathematicaSinica, 1990, (01) : 87 - 97
  • [50] Reduction of Conjugacy Problem in braid groups, using two Garside structures
    Samuel, Maffre
    CODING AND CRYPTOGRAPHY, 2006, 3969 : 189 - 201