Curve graphs and Garside groups

被引:0
|
作者
Matthieu Calvez
Bert Wiest
机构
[1] Universidad de Santiago de Chile,Departamento de matemática y ciencia de la computación, Facultad de Ciencia
[2] Université de Rennes 1,UFR Mathématiques
来源
Geometriae Dedicata | 2017年 / 188卷
关键词
Garside groups; Braid groups; Curve complexes; Gromov-hyperbolic; 20F36; 20F65;
D O I
暂无
中图分类号
学科分类号
摘要
We present a simple construction which associates to every Garside group a metric space, called the additional length graph, on which the group acts. These spaces share important features with curve graphs: they are δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-hyperbolic, infinite, and typically locally infinite graphs. We conjecture that, apart from obvious counterexamples, additional length graphs have always infinite diameter. We prove this conjecture for the classical example of braid groups (Bn,Bn+,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B_n,B_n^{+},\varDelta )$$\end{document}; moreover, in this framework, reducible and periodic braids act elliptically, and at least some pseudo-Anosov braids act loxodromically. We conjecture that for Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document}, the additional length graph is actually quasi-isometric to the curve graph of the n times punctured disk.
引用
收藏
页码:195 / 213
页数:18
相关论文
共 50 条
  • [1] Curve graphs and Garside groups
    Calvez, Matthieu
    Wiest, Bert
    GEOMETRIAE DEDICATA, 2017, 188 (01) : 195 - 213
  • [2] Garside groups
    Dehornoy, P
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (02): : 267 - 306
  • [3] Ordering Garside groups
    Arcis, Diego
    Paris, Luis
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (05) : 861 - 883
  • [4] Subgroup conjugacy problem for Garside subgroups of Garside groups
    Kalka, Arkadius
    Liberman, Eran
    Teicher, Mina
    GROUPS COMPLEXITY CRYPTOLOGY, 2010, 2 (02) : 157 - 174
  • [5] Left orders in Garside groups
    Chouraqui, Fabienne
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (07) : 1349 - 1359
  • [6] The language of geodesics for Garside groups
    Charney, R
    Meier, J
    MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (03) : 495 - 509
  • [7] Parabolic subgroups of Garside groups
    Godelle, Eddy
    JOURNAL OF ALGEBRA, 2007, 317 (01) : 1 - 16
  • [8] Abelian subgroups of garside groups
    Lee, Eon-Kyung
    Lee, Sang Jin
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 1121 - 1139
  • [9] Conjugacy problem for braid groups and Garside groups
    Franco, N
    González-Meneses, J
    JOURNAL OF ALGEBRA, 2003, 266 (01) : 112 - 132
  • [10] Periodic elements in Garside groups
    Lee, Eon-Kyung
    Lee, Sang-Jin
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (10) : 2295 - 2314