Existence of solution for a general class of elliptic equations with exponential growth

被引:0
|
作者
Anderson L. A. de Araujo
Marcelo Montenegro
机构
[1] UFV,
[2] Universidade Estadual de Campinas,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2016年 / 195卷
关键词
Dirichlet problem; Galerkin approximation; Trudinger–Moser inequality; Exponential growth; Conformal geometry; 35B38; 35J92; 35B33; 35J62;
D O I
暂无
中图分类号
学科分类号
摘要
We use Galerkin approximations to show the existence of solution for a class of elliptic equations on bounded domains in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} with subcritical or critical exponential nonlinearities. We are able to solve the problem under more general assumptions usually assumed in the variational the approach, but not in our paper.
引用
收藏
页码:1737 / 1748
页数:11
相关论文
共 50 条