In this paper, we study the existence of infinitely many periodic solutions to planar radially symmetric systems with certain strong repulsive singularities near the origin and with some semilinear growth near infinity. The proof of the main result relies on topological degree theory. Recent results in the literature are generalized and complemented.
机构:
Nicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandNicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
Golebiewska, Anna
Kowalczyk, Marta
论文数: 0引用数: 0
h-index: 0
机构:
Nicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandNicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
Kowalczyk, Marta
Rybicki, Slawomir
论文数: 0引用数: 0
h-index: 0
机构:
Nicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandNicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
Rybicki, Slawomir
Stefaniak, Piotr
论文数: 0引用数: 0
h-index: 0
机构:
Nicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, PolandNicolaus Copernicus Univ Torun, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
Stefaniak, Piotr
ELECTRONIC RESEARCH ARCHIVE,
2022,
30
(05):
: 1691
-
1707