A smoothing Newton method for symmetric cone complementarity problem

被引:6
|
作者
Liu L. [1 ]
Liu S. [1 ]
Wu Y. [1 ]
机构
[1] Department of Mathematics and Statistics, Xidian University, Xi’an
来源
J. Appl. Math. Comp. | / 1-2卷 / 175-191期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Cartesian P[!sub]0[!/sub]-property; Coerciveness; Complementarity problem; Smoothing Newton method; Symmetric cone;
D O I
10.1007/s12190-014-0768-3
中图分类号
学科分类号
摘要
We first extend a new class of smoothing functions, which contains the well-known Chen-Harker-Kanzow-Smale smoothing function and Huang-Han-Chen smoothing function as special cases, for the nonlinear complementarity problem to the symmetric cone complementarity problem (SCCP). And then we present a smoothing Newton algorithm for the SCCP based on the new class of smoothing functions. Both the existence of Newton directions and the boundedness of the level set are showed for the SCCP with the Cartesian P0-property, which contains the monotone SCCP as a special case. The global linear convergence and locally superlinear convergence are established under a nonsingular assumption. Some numerical results for second order cone complementarity problems, a special case of SCCP, show that the proposed algorithm is effective. © 2014, Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:175 / 191
页数:16
相关论文
共 50 条
  • [41] An inexact smoothing method for the monotone complementarity problem over symmetric cones
    Zhang, Jian
    Zhang, Kecun
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (03): : 445 - 459
  • [42] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [43] A smoothing inexact Newton method for P0 nonlinear complementarity problem
    Che, Haitao
    Wang, Yiju
    Li, Meixia
    FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (06) : 1043 - 1058
  • [44] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [45] The convergence of a smoothing damped Gauss-Newton method for nonlinear complementarity problem
    Ma, Changfeng
    Jiang, Lihua
    Wang, Desheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2072 - 2087
  • [46] A smoothing inexact Newton method for P0 nonlinear complementarity problem
    Haitao Che
    Yiju Wang
    Meixia Li
    Frontiers of Mathematics in China, 2012, 7 : 1043 - 1058
  • [47] A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem
    Jingyong Tang
    Hongchao Zhang
    Journal of Optimization Theory and Applications, 2021, 189 : 679 - 715
  • [48] Smoothing Newton Algorithm for Nonlinear Complementarity Problem with a PFunction
    刘丹红
    黄涛
    王萍
    Transactions of Tianjin University, 2007, (05) : 379 - 386
  • [49] A smoothing Newton algorithm for weighted linear complementarity problem
    Zhang Jian
    Optimization Letters, 2016, 10 : 499 - 509
  • [50] Smoothing Newton Algorithm for Solving Generalized Complementarity Problem
    刘晓红
    倪铁
    Transactions of Tianjin University, 2010, (01) : 75 - 79