Abstract Hilbert Schemes

被引:0
|
作者
M. Artin
J. J. Zhang
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
[2] University of Washington,Department of Mathematics
来源
关键词
basechange; Grothendieck category; Hilbert scheme; noncommutative projective scheme;
D O I
暂无
中图分类号
学科分类号
摘要
In analogy with classical projective algebraic geometry, Hilbert functors can be defined for objects in any Abelian category. We study the moduli problem for such objects. Using Grothendieck's general framework. We show that with suitable hypotheses the Hilbert functor is representable by an algebraic space locally of finite type over the base field. For the category of the graded modules over a strongly Noetherian graded ring, the Hilbert functor of graded modules with a fixed Hilbert series is represented by a commutative projective scheme. For the projective scheme corresponding to a suitable noncommutative graded algebra, the Hilbert functor is represented by a countable union of commutative projective schemes.
引用
收藏
页码:305 / 394
页数:89
相关论文
共 50 条
  • [31] The number of components of Hilbert schemes
    Chang, MC
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (03) : 301 - 306
  • [32] Abstract Grothendieck Duality for Schemes
    Lipman, Joseph
    Hashimoto, Mitsuyasu
    FOUNDATIONS OF GROTHENDIECK DUALITY FOR DIAGRAMS OF SCHEMES, 2009, 1960 : 159 - 252
  • [33] An abstract dirichlet problem in the hilbert space
    Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 31464, Jeddah 21497, Saudi Arabia
    J. Appl. Math. Comp., 1 (109-116):
  • [34] An abstract Dirichlet problem in the Hilbert space
    Hamza A. S. Abujabal
    Mahmoud M. El-Borai
    Korean Journal of Computational & Applied Mathematics, 1997, 4 (1): : 109 - 116
  • [35] Syzygies in Hilbert schemes of complete intersections
    Caviglia, Giulio
    Sammartano, Alessio
    JOURNAL OF ALGEBRA, 2023, 619 : 538 - 557
  • [36] GONALITY AND HILBERT SCHEMES OF SMOOTH CURVES
    MEZZETTI, E
    SACCHIERO, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 183 - 194
  • [37] Smooth and irreducible multigraded Hilbert schemes
    Maclagan, Diane
    Smith, Gregory G.
    ADVANCES IN MATHEMATICS, 2010, 223 (05) : 1608 - 1631
  • [38] Smooth Hilbert schemes: Their classification and geometry
    Skjelnes, Roy
    Smith, Gregory G.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (794): : 281 - 305
  • [39] DEFORMATION OF HILBERT SCHEMES OF POINTS ON A SURFACE
    FANTECHI, B
    COMPOSITIO MATHEMATICA, 1995, 98 (02) : 205 - 217
  • [40] THE FAT LOCUS OF HILBERT SCHEMES OF POINTS
    COPPENS, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) : 777 - 783