A random walk proof of the Erdos-Taylor conjecture

被引:3
|
作者
Rosen J. [1 ]
机构
[1] Department of Mathematics, College of Staten Island, CUNY, Staten Island
关键词
Frequent points; Random walks;
D O I
10.1007/s10998-005-0014-8
中图分类号
学科分类号
摘要
For the simple random walk in ℤ we study those points which are visited an unusually large number of times, and provide a new proof of the Erdos-Taylor Conjecture describing the number of visits to the most visited point. © Akadémiai Kiadó, Budapest.
引用
收藏
页码:223 / 245
页数:22
相关论文
共 50 条
  • [41] A counterexample to a conjecture of Erdos
    Bíyíkoglu, T
    DISCRETE MATHEMATICS, 2002, 250 (1-3) : 231 - 232
  • [42] A Direct Proof of Significant Directed Random Walk
    Sen Seah, Choon
    Kasim, Shahreen
    Fudzee, Mohd Farhan Md
    Mohamad, Mohd Saberi
    2ND INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2017), 2017, 235
  • [43] On a conjecture of Erdos and Lewin
    Yu, Wang-Xing
    Chen, Yong-Gao
    JOURNAL OF NUMBER THEORY, 2022, 238 : 763 - 778
  • [44] A CONJECTURE BY ERDOS,P
    KUHN, H
    ARCHIV DER MATHEMATIK, 1970, 21 (02) : 185 - &
  • [45] ON A CONJECTURE OF TURAN AND ERDOS
    TIJDEMAN, R
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1966, 69 (03): : 374 - &
  • [46] ON A CONJECTURE OF ERDOS AND RENYI
    MIECH, RJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1967, 11 (01) : 114 - &
  • [47] A Darling-Erdos-type theorem for standardized random walk summation
    Horvath, L
    Shao, QM
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 : 425 - 432
  • [48] On a problem of Erdos and Taylor
    Khoshnevisan, D
    Lewis, TM
    Shi, Z
    ANNALS OF PROBABILITY, 1996, 24 (02): : 761 - 787
  • [49] A theorem about vectors in R2 and an algebraic proof of a conjecture of Erdos and Purdy
    Pinchasi, R. O. M.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 81 : 170 - 186
  • [50] A short proof of Erdos-Straus conjecture for every n ≡ 13 mod 24
    Gionfriddo, Mario
    Guardo, Elena
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (08) : 2307 - 2312