A characterization of reflexive spaces of operators

被引:0
|
作者
Janko Bračič
Lina Oliveira
机构
[1] University of Ljubljana,Naravoslovnotehniška Fakulteta
[2] Universidade de Lisboa,Center for Mathematical Analysis, Geometry and Dynamical Systems, and Department of Mathematics, Instituto Superior Técnico
[3] Av. Rovisco Pais,undefined
来源
Czechoslovak Mathematical Journal | 2018年 / 68卷
关键词
reflexive space of operators; order-preserving map; 47A15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a linear space of operators M ⊆ B(H1, H2) the following assertions are equivalent. (i) M is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = (ψ1, ψ2) on a bilattice Bil(M) of subspaces determined by M with P ≤ ψ1(P,Q) and Q ≤ ψ2(P,Q) for any pair (P,Q) ∈ Bil(M), and such that an operator T ∈ B(H1, H2) lies in M if and only if ψ2(P,Q)Tψ1(P,Q) = 0 for all (P,Q) ∈ Bil(M). This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
引用
收藏
页码:257 / 266
页数:9
相关论文
共 50 条