Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

被引:0
|
作者
Thabet Abdeljawad
Ravi P. Agarwal
Jehad Alzabut
Fahd Jarad
Abdullah Özbekler
机构
[1] Prince Sultan University,Department of Mathematics and General Sciences
[2] Texas A&M University–Kingsville,Department of Mathematics
[3] Çankaya University,Department of Mathematics
[4] Atilim University,Department of Mathematics
关键词
Lyapunov inequality; Hartman inequality; Conformable derivative; Green’s function; Boundary value problem; Mixed non-linearities; 34A08; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order α∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1,2]$\end{document} with mixed non-linearities of the form (Tαax)(t)+r1(t)|x(t)|η−1x(t)+r2(t)|x(t)|δ−1x(t)=g(t),t∈(a,b),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(\mathbf{T}_{\alpha }^{a} x\bigr) (t)+r_{1}(t) \bigl\vert x(t) \bigr\vert ^{\eta -1}x(t)+r_{2}(t)\bigl\vert x(t) \bigr\vert ^{ \delta -1}x(t)=g(t), \quad t\in (a,b), $$\end{document} satisfying the Dirichlet boundary conditions x(a)=x(b)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(a)=x(b)=0$\end{document}, where r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document}, and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0<η<1<δ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\eta <1<\delta <2$\end{document}. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a}$\end{document} is replaced by a sequential conformable derivative Tαa∘Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a} \circ \mathbf{T}_{\alpha }^{a}$\end{document}, α∈(1/2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1/2,1]$\end{document}. The potential functions r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document} as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
引用
收藏
相关论文
共 50 条