Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

被引:0
|
作者
Thabet Abdeljawad
Ravi P. Agarwal
Jehad Alzabut
Fahd Jarad
Abdullah Özbekler
机构
[1] Prince Sultan University,Department of Mathematics and General Sciences
[2] Texas A&M University–Kingsville,Department of Mathematics
[3] Çankaya University,Department of Mathematics
[4] Atilim University,Department of Mathematics
关键词
Lyapunov inequality; Hartman inequality; Conformable derivative; Green’s function; Boundary value problem; Mixed non-linearities; 34A08; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order α∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1,2]$\end{document} with mixed non-linearities of the form (Tαax)(t)+r1(t)|x(t)|η−1x(t)+r2(t)|x(t)|δ−1x(t)=g(t),t∈(a,b),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(\mathbf{T}_{\alpha }^{a} x\bigr) (t)+r_{1}(t) \bigl\vert x(t) \bigr\vert ^{\eta -1}x(t)+r_{2}(t)\bigl\vert x(t) \bigr\vert ^{ \delta -1}x(t)=g(t), \quad t\in (a,b), $$\end{document} satisfying the Dirichlet boundary conditions x(a)=x(b)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(a)=x(b)=0$\end{document}, where r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document}, and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0<η<1<δ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\eta <1<\delta <2$\end{document}. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a}$\end{document} is replaced by a sequential conformable derivative Tαa∘Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a} \circ \mathbf{T}_{\alpha }^{a}$\end{document}, α∈(1/2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1/2,1]$\end{document}. The potential functions r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document} as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives
    Abdeljawad, Thabet
    Agarwal, Ravi P.
    Alzabut, Jehad
    Jarad, Fahd
    Ozbekler, Abdullah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] Lyapunov-type inequalities for differential equations
    Canada, Antonio
    Montero, Juan A.
    Villegas, Salvador
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (02) : 177 - 187
  • [3] Lyapunov-type Inequalities for Differential Equations
    Antonio Cañada
    Juan A. Montero
    Salvador Villegas
    Mediterranean Journal of Mathematics, 2006, 3 : 177 - 187
  • [4] Lyapunov-type inequalities for partial differential equations
    de Napoli, Pablo L.
    Pinasco, Juan P.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (06) : 1995 - 2018
  • [5] LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS
    Dhar, Sougata
    Kong, Qingkai
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 297 - 312
  • [6] LYAPUNOV-TYPE INEQUALITIES FOR A CLASS OF LINEAR SEQUENTIAL FRACTIONAL DIFFERENTIAL EQUATIONS
    Peng, Youhua
    Wang, Xuhuan
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (04): : 859 - 867
  • [7] LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS
    Aktas, Mustafa Fahri
    Cakmak, Devrim
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [8] Lyapunov-type inequalities for a class of higher-order linear differential equations
    Yang, Xiaojing
    Kim, Yong-In
    Lo, Kueiming
    APPLIED MATHEMATICS LETTERS, 2014, 34 : 86 - 89
  • [9] Lyapunov-type Inequalities for a System of Nonlinear Differential Equations
    WEI GENG-PING
    Shi Shao-yun
    Communications in Mathematical Research, 2017, 33 (03) : 205 - 214
  • [10] Lyapunov-type inequalities for a class of fractional differential equations
    Donal O’Regan
    Bessem Samet
    Journal of Inequalities and Applications, 2015