Second-order asymptotics in a class of purely sequential minimum risk point estimation (MRPE) methodologies

被引:0
|
作者
Jun Hu
Nitis Mukhopadhyay
机构
[1] University of Vermont,Department of Mathematics and Statistics
[2] University of Connecticut,Department of Statistics
关键词
Asymptotic first-order properties; Asymptotic second-order properties; Linear cost; Regret; Risk efficiency; Sequential strategy; Simulations; Squared error loss; 62L10; 62L12; 62G05; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
Under the squared error loss plus linear cost of sampling, we revisit the minimum risk point estimation (MRPE) problem for an unknown normal mean μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document} when the variance σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{2}$$\end{document} also remains unknown. We begin by defining a new class of purely sequential MRPE methodologies based on a general estimator Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} for σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} satisfying a set of conditions in proposing the requisite stopping boundary. Under such appropriate set of sufficient conditions on Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document} and a properly constructed associated stopping variable, we show that (i) the normalized stopping time converges in law to a normal distribution (Theorem 3.3), and (ii) the square of such a normalized stopping time is uniformly integrable (Theorem 3.4). These results subsequently lead to an asymptotic second-order expansion of the associated regret function in general (Theorem 4.1). After such general considerations, we include a number of substantial illustrations where we respectively substitute appropriate multiples of Gini’s mean difference and the mean absolute deviation in the place of the general estimator Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{n}$$\end{document}. These illustrations show a number of desirable asymptotic first-order and second-order properties under the resulting purely sequential MRPE strategies. We end this discourse by highlighting selected summaries obtained via simulations.
引用
收藏
页码:81 / 104
页数:23
相关论文
共 50 条