Precise Asymptotic Shapes of Solutions to Nonlinear Two-Parameter Problems

被引:0
|
作者
Tetsutaro Shibata
机构
[1] Hiroshima University,Department of Applied Mathematics, Graduate School of Engineering
来源
Results in Mathematics | 2007年 / 50卷
关键词
Primary 34B15; Two-parameter; eigenvalue problems;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the nonlinear two-parameter problem, which comes from a perturbed simple pendulum problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$-u^{\prime\prime}(t)+\mu f(u(t)) = \lambda g(u(t)), t \in I: = (-T, T), u(t) > 0,\quad t \in I,\quad u(\pm T) = 0,$$ \end{document} where μ, λ > 0 are parameters and T > 0 is a constant. For a given μ > 0, there exists a solution triple (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mu, \lambda(\mu), u_{\mu}) \in \rm{R}^{2}_{+}\times C^{2}(\bar{I}),$$ \end{document} which is obtained by a variational method, such that uμ is almost flat inside I and develops boundary layers as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mu \rightarrow \infty$$ \end{document}. We establish the precise asymptotic formulas for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\|u_{\mu}\|_{q}(1 \leq q \leq \infty), u^{\prime}_{\mu} (\pm T)$$ \end{document} and the variational eigencurve λ(μ) as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mu \rightarrow \infty$$ \end{document}. By these formulas, we understand well not only the local behavior of uμ as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mu \rightarrow \infty$$ \end{document}, but also the total shape of uμ. Furthermore, we find the precise asymptotics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\|u_{\mu}\|_{q}$$ \end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q \rightarrow \infty$$ \end{document}. By this, we understand well how \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\|u_{\mu}\|_{q}$$ \end{document} tends to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\|u_{\mu}\|_{\infty}$$ \end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q \rightarrow \infty$$ \end{document}.
引用
收藏
页码:259 / 273
页数:14
相关论文
共 50 条