We introduce the notion of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathfrak{g}}{\mathfrak{l}(V)}$$
\end{document}-prolongation of Lie algebras of differential operators on homogeneous spaces. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathfrak{g}}{\mathfrak{l}(V)}$$
\end{document}-prolongations are topological invariants that coincide with one-dimensional cohomologies of the corresponding Lie algebras in the case where V is a homogeneous space. We apply the obtained results to the spaces S1 (the Virasoro algebra) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\mathbb{R}}^1 $$
\end{document}.