Prolongations of Vector Fields on Lie Groups and Homogeneous Spaces

被引:0
|
作者
S. P. Baranovskii
I. V. Shirokov
机构
[1] Omsk State University,
关键词
Lie groups; homogeneous spaces; vector fields; Lie algebra cohomologies;
D O I
10.1023/A:1023283418983
中图分类号
学科分类号
摘要
We introduce the notion of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathfrak{g}}{\mathfrak{l}(V)}$$ \end{document}-prolongation of Lie algebras of differential operators on homogeneous spaces. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathfrak{g}}{\mathfrak{l}(V)}$$ \end{document}-prolongations are topological invariants that coincide with one-dimensional cohomologies of the corresponding Lie algebras in the case where V is a homogeneous space. We apply the obtained results to the spaces S1 (the Virasoro algebra) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{R}}^1 $$ \end{document}.
引用
收藏
页码:510 / 519
页数:9
相关论文
共 50 条