For a proper, flat, generically smooth scheme X over a complete discrete valuation ring with finite residue field of characteristic p, we construct a specialization morphism from the rigid cohomology of the geometric special fibre to Dcris\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D_{cris}$$\end{document} of the p-adic étale cohomology of the geometric generic fibre, and we make a conjecture (“p-adic local invariant cycle theorem”) that describes the behavior of this map for regular X, analogous to the situation in ℓ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\ell }$$\end{document}-adic étale cohomology for ℓ≠p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\ell }\ne p$$\end{document}. Our main result is that, if X has semistable reduction, this specialization map induces an isomorphism on the slope [0, 1)-part.