On the p-adic local invariant cycle theorem

被引:0
|
作者
Yi-Tao Wu
机构
[1] Universität Regensburg,Fakultät für Mathematik
来源
Mathematische Zeitschrift | 2017年 / 285卷
关键词
p-adic cohomology; Specialization map; Slope filtration; Trace morphism; 14F20; 14F30;
D O I
暂无
中图分类号
学科分类号
摘要
For a proper, flat, generically smooth scheme X over a complete discrete valuation ring with finite residue field of characteristic p, we construct a specialization morphism from the rigid cohomology of the geometric special fibre to Dcris\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{cris}$$\end{document} of the p-adic étale cohomology of the geometric generic fibre, and we make a conjecture (“p-adic local invariant cycle theorem”) that describes the behavior of this map for regular X, analogous to the situation in ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell }$$\end{document}-adic étale cohomology for ℓ≠p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell }\ne p$$\end{document}. Our main result is that, if X has semistable reduction, this specialization map induces an isomorphism on the slope [0, 1)-part.
引用
收藏
页码:1125 / 1139
页数:14
相关论文
共 50 条
  • [1] On the p-adic local invariant cycle theorem
    Wu, Yi-Tao
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 1125 - 1139
  • [2] On a p-adic invariant cycles theorem
    Chiarellotto, Bruno
    Coleman, Robert
    Di Proietto, Valentina
    Iovita, Adrian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 55 - 74
  • [3] A p-adic local monodromy theorem
    Kedlaya, KS
    ANNALS OF MATHEMATICS, 2004, 160 (01) : 93 - 184
  • [4] ON THE LOCAL CONVERSE THEOREM FOR p-ADIC GLn
    Jacquet, Herve
    Liu, Baiying
    AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (05) : 1399 - 1422
  • [5] p-adic analog of the Turrittin theorem and the theorem of p-adic monodromy
    Mebkhout, Z
    INVENTIONES MATHEMATICAE, 2002, 148 (02) : 319 - 351
  • [6] The p-adic local monodromy theorem for fake annuli
    Kedlaya, Kiran S.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2007, 118 : 101 - 146
  • [7] A local-global theorem for p-adic supercongruences
    Pan, Hao
    Tauraso, Roberto
    Wang, Chen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (790): : 53 - 83
  • [8] A CONFORMAL P-ADIC INVARIANT
    MOTZKIN, E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (13): : 507 - &
  • [9] p-Adic Invariant Summation of Some p-Adic Functional Series
    Dragovich, B.
    Misic, N. Z.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2014, 6 (04) : 275 - 283
  • [10] P-ADIC NEVANLINNA THEOREM
    BOUTABAA, A
    MANUSCRIPTA MATHEMATICA, 1990, 67 (03) : 251 - 269