Gradient Bounds for Elliptic Problems Singular at the Boundary

被引:0
|
作者
Tommaso Leonori
Alessio Porretta
机构
[1] Universidad de Granada,Departamento de Análisis Matemático, Facultad de Ciencias
[2] Università di Roma Tor Vergata,Dipartimento di Matematica
关键词
Viscosity Solution; Elliptic Problem; Neumann Condition; Transport Term; Elliptic Regularity;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be a bounded smooth domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{R}^N, N \geqq 2}$$\end{document}, and let us denote by d(x) the distance function d(x, ∂Ω). We study a class of singular Hamilton–Jacobi equations, arising from stochastic control problems, whose simplest model is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ - \alpha \Delta u+ u + \frac{\nabla u \cdot B (x)}{d (x)}+ c(x) |\nabla u|^2=f (x) \quad {\rm in}\,\Omega, $$\end{document}where f belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W^{1,\infty}_{\rm loc} (\Omega)}$$\end{document} and is (possibly) singular at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Omega, c\in W^{1,\infty} (\Omega)}$$\end{document} (with no sign condition) and the field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\in W^{1,\infty} (\Omega)^N}$$\end{document} has an outward direction and satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\cdot \nu\geqq \alpha}$$\end{document} at ∂Ω (ν is the outward normal). Despite the singularity in the equation, we prove gradient bounds up to the boundary and the existence of a (globally) Lipschitz solution. We show that in some cases this is the unique bounded solution. We also discuss the stability of such estimates with respect to α, as α vanishes, obtaining Lipschitz solutions for first order problems with similar features. The main tool is a refined weighted version of the classical Bernstein method to get gradient bounds; the key role is played here by the orthogonal transport component of the Hamiltonian.
引用
收藏
页码:663 / 705
页数:42
相关论文
共 50 条