Gravity action on rapidly varying metrics

被引:0
|
作者
V. M. Khatsymovsky
机构
[1] Budker Institute of Nuclear Physics,
来源
General Relativity and Gravitation | 2011年 / 43卷
关键词
Path integral; Piecewise flat spacetime; Generalized function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a four-dimensional simplicial complex and the minisuperspace general relativity system on it. The metric is flat in most parts of the interior of every 4-simplex, with the exception of a thin layer of thickness \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\propto \varepsilon}$$\end{document} along each three-dimensional face. In this layer the metric undergoes a jump between the two 4-simplices sharing this face. At \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon \to 0}$$\end{document} this jump would become a discontinuity. However, a discontinuity of the metric induced on the face is not allowed in general relativity: terms arise in the Einstein action tending to infinity as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon \to 0}$$\end{document} . In the path integral approach, these terms lead to the pre-exponent factor with δ-functions requiring that the metric induced on the faces be continuous. That is, the 4-simplices fit on their common faces. The other part of the path integral measure corresponds to the action, which is the sum of independent terms over the 4-simplices. Therefore this part of the path integral measure is the product of independent measures over the 4-simplices. The result obtained is in accordance with our previous one obtained from symmetry considerations.
引用
收藏
页码:3127 / 3138
页数:11
相关论文
共 50 条
  • [41] Kerr-Schild metrics in teleparallel gravity
    Froeb, Markus B.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (08):
  • [42] RAPIDLY VARYING DNA-SEQUENCES IN FLAX
    CULLIS, CA
    CLEARY, W
    CANADIAN JOURNAL OF GENETICS AND CYTOLOGY, 1986, 28 (02): : 252 - 259
  • [43] A method of measuring the fluctuations in a rapidly varying resistance
    Brown, FC
    Clark, WH
    PHYSICAL REVIEW, 1911, 33 (01): : 53 - 59
  • [44] INTEGRAL PROPERTIES OF RAPIDLY AND REGULARLY VARYING FUNCTIONS
    Elez, Nebojsa
    Vladicic, Vladimir
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 91 - 96
  • [45] Big bang nucleosynthesis with rapidly varying G
    Giri, Anish
    Scherrer, Robert J.
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [46] POWER ALLOCATION - RAPIDLY VARYING PHASE ERROR
    HAYES, JF
    LINDSEY, WC
    IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY, 1969, CO17 (02): : 323 - &
  • [47] SEARCH FOR RAPIDLY VARYING RADIO-SOURCES
    HARVEY, GA
    ANDREW, BH
    MACLEOD, JM
    MEDD, WJ
    ASTROPHYSICAL LETTERS & COMMUNICATIONS, 1972, 11 (03) : 147 - &
  • [48] ECHO WAVEFORM SYNTHESIS IN A RAPIDLY VARYING GEOMETRY
    RICKER, DW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1982, 72 (04): : 1321 - 1323
  • [49] Rapidly varying transient flows in alluvial rivers
    Singh, AK
    Kothyari, UC
    Raju, KGR
    JOURNAL OF HYDRAULIC RESEARCH, 2004, 42 (05) : 473 - 486
  • [50] On Optimal Tracking of Rapidly Varying Telecommunication Channels
    Niedzwiecki, Maciej
    Gancza, Artur
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 2726 - 2738