On geodesibility of algebrizable planar vector fields

被引:0
|
作者
M. E. Frías-Armenta
E. López-González
机构
[1] Universidad de Sonora,Departamento de Matemáticas
[2] Universidad Autónoma de Ciudad Juárez,Unidad Multidisciplinaria de la UACJ en Cuauhtémoc
关键词
Vector fields; Riemannian metrics; Lorch differentiability; Geodesible vector fields; 37C10; 53B20; 58C20; 53C22;
D O I
暂无
中图分类号
学科分类号
摘要
Geodesibility of vector fields was studied by Gluck and Sullivan in the 1970s. For the case of complex analytical vector fields, Jenkins shed light on the subject from the end of the 1950s. After the 1970s, multiple authors have studied the subject, such as K. Strebel, and Muciño-Raymundo and Valero-Valdéz. In this paper, we consider planar vector fields which are A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document}-algebrizable (differentiable in the sense of Lorch for some associative and commutative algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document} with unit e). We give rectifications of these vector fields and metrics under which they are geodesible.
引用
收藏
页码:163 / 186
页数:23
相关论文
共 50 条
  • [21] Structural Stability of Planar Quasihomogeneous Vector Fields
    Regilene Oliveira
    Yulin Zhao
    Qualitative Theory of Dynamical Systems, 2014, 13 : 39 - 72
  • [22] Structural Stability of Planar Quasihomogeneous Vector Fields
    Oliveira, Regilene
    Zhao, Yulin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2014, 13 (01) : 39 - 72
  • [23] Planar biharmonic vector fields; potentials and traces
    Auchmuty, Giles
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2023, 8 (03) : 413 - 426
  • [24] ON THE SOLVABILITY OF PLANAR COMPLEX LINEAR VECTOR FIELDS
    Treves, Francois
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) : 4629 - 4662
  • [25] Algebraic integrability of nilpotent planar vector fields
    Algaba, A.
    Garcia, C.
    Reyes, M.
    CHAOS SOLITONS & FRACTALS, 2021, 145 (145)
  • [26] Global hypoellipticity of planar complex vector fields
    Bergamasco, Adalberto P.
    Laguna, Renato A.
    Zani, Sergio L.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5220 - 5257
  • [27] On the integrability of quasihomogeneous and related planar vector fields
    García, IA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04): : 995 - 1002
  • [28] Planar Vector Fields with a Given Set of Orbits
    Llibre, Jaume
    Ramirez, Rafael
    Sadovskaia, Natalia
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2011, 23 (04) : 885 - 902
  • [29] ON THE MULTIPLICITY OF THE CIRCUMFERENCE IN PLANAR POLYNOMIAL VECTOR FIELDS
    Gine, Jaume
    Grau, Maite
    De Prada, Paz
    FIXED POINT THEORY, 2008, 9 (01): : 105 - 137
  • [30] A note on analytic integrability of planar vector fields
    Algaba, A.
    Garcia, C.
    Reyes, M.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 : 555 - 562