On geodesibility of algebrizable planar vector fields

被引:0
|
作者
M. E. Frías-Armenta
E. López-González
机构
[1] Universidad de Sonora,Departamento de Matemáticas
[2] Universidad Autónoma de Ciudad Juárez,Unidad Multidisciplinaria de la UACJ en Cuauhtémoc
关键词
Vector fields; Riemannian metrics; Lorch differentiability; Geodesible vector fields; 37C10; 53B20; 58C20; 53C22;
D O I
暂无
中图分类号
学科分类号
摘要
Geodesibility of vector fields was studied by Gluck and Sullivan in the 1970s. For the case of complex analytical vector fields, Jenkins shed light on the subject from the end of the 1950s. After the 1970s, multiple authors have studied the subject, such as K. Strebel, and Muciño-Raymundo and Valero-Valdéz. In this paper, we consider planar vector fields which are A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document}-algebrizable (differentiable in the sense of Lorch for some associative and commutative algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {A}$$\end{document} with unit e). We give rectifications of these vector fields and metrics under which they are geodesible.
引用
收藏
页码:163 / 186
页数:23
相关论文
共 50 条
  • [1] On geodesibility of algebrizable planar vector fields
    Frias-Armenta, M. E.
    Lopez-Gonzalez, E.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (01): : 163 - 186
  • [2] Regularisation for Planar vector fields
    Duignan, Nathan
    Dullin, Holger R.
    NONLINEARITY, 2020, 33 (01) : 106 - 138
  • [3] On the degeneracy of planar vector fields
    Yang, J
    Teixeira, MA
    REAL AND COMPLEX SINGULARITIES, 2000, 412 : 266 - 275
  • [4] Orbital Reversibility of Planar Vector Fields
    Algaba, Antonio
    Garcia, Cristobal
    Gine, Jaume
    MATHEMATICS, 2021, 9 (01) : 1 - 25
  • [5] Symmetries of planar algebraic vector fields
    Alcazar, Juan Gerardo
    Lavicka, Miroslav
    Vrsek, Jan
    COMPUTER AIDED GEOMETRIC DESIGN, 2024, 111
  • [6] Dulac Functions of Planar Vector Fields
    Jaume Giné
    Qualitative Theory of Dynamical Systems, 2014, 13 : 121 - 128
  • [7] Dulac Functions of Planar Vector Fields
    Gine, Jaume
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2014, 13 (01) : 121 - 128
  • [8] Elliptic planar vector fields with degeneracies
    Meziani, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) : 4225 - 4248
  • [9] Singularity analysis in planar vector fields
    Gine, Jaume
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [10] A strong uniqueness theorem for planar vector fields
    Berhanu, S
    Hounie, J
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2001, 32 (03): : 359 - 376