Random Triangle Theory with Geometry and Applications

被引:0
|
作者
Alan Edelman
Gilbert Strang
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
关键词
Random triangle; Triangle space; Shape theory; Hopf fibration; Random matrix; Lewis Carroll; Primary 51-xx; 15B52; 60B52; 52A22; 60G57; 51M15; 51M04;
D O I
暂无
中图分类号
学科分类号
摘要
What is the probability that a random triangle is acute? We explore this old question from a modern viewpoint, taking into account linear algebra, shape theory, numerical analysis, random matrix theory, the Hopf fibration, and much more. One of the best distributions of random triangles takes all six vertex coordinates as independent standard Gaussians. Six can be reduced to four by translation of the center to (0,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,0)$$\end{document} or reformulation as a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} random matrix problem. In this note, we develop shape theory in its historical context for a wide audience. We hope to encourage others to look again (and differently) at triangles. We provide a new constructive proof, using the geometry of parallelians, of a central result of shape theory: triangle shapes naturally fall on a hemisphere. We give several proofs of the key random result: that triangles are uniformly distributed when the normal distribution is transferred to the hemisphere. A new proof connects to the distribution of random condition numbers. Generalizing to higher dimensions, we obtain the “square root ellipticity statistic” of random matrix theory. Another proof connects the Hopf map to the SVD of 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} matrices. A new theorem describes three similar triangles hidden in the hemisphere. Many triangle properties are reformulated as matrix theorems, providing insight into both. This paper argues for a shift of viewpoint to the modern approaches of random matrix theory. As one example, we propose that the smallest singular value is an effective test for uniformity. New software is developed, and applications are proposed.
引用
收藏
页码:681 / 713
页数:32
相关论文
共 50 条
  • [41] A sacred geometry of the equilateral triangle
    Doolan, E. P.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (05) : 601 - 629
  • [42] Evolving geometry of a vortex triangle
    Krishnamurthy, Vikas S.
    Aref, Hassan
    Stremler, Mark A.
    PHYSICAL REVIEW FLUIDS, 2018, 3 (02):
  • [43] Contribution to the geometry of the triangle.
    Thebault, V
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1944, 218 : 433 - 435
  • [44] Geometry 101: The Equilateral Triangle
    Pantages, Dick
    JOURNAL OF ENVIRONMENTAL HEALTH, 2009, 71 (07) : 4 - 5
  • [45] Geometry of Koch's triangle
    Klimek-Piotrowska, Wieslawa
    Holda, Mateusz K.
    Koziej, Mateusz
    Salapa, Kinga
    Piatek, Katarzyna
    Holda, Jakub
    EUROPACE, 2017, 19 (03): : 452 - 457
  • [46] The geometry, branes and applications of exceptional field theory
    Berman, David S.
    Blair, Chris
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (30):
  • [47] Sturm theory with applications in geometry and classical mechanics
    Barutello, Vivina L.
    Offin, Daniel
    Portaluri, Alessandro
    Wu, Li
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 257 - 297
  • [48] Applications of information geometry to interest rate theory
    Brody, DC
    Hughston, LP
    DISORDERED AND COMPLEX SYSTEMS, 2001, 553 : 281 - 287
  • [49] Geometry of Banach Spaces, Operator Theory, and Their Applications
    Xu, Genqi
    Gao, Ji
    Liu, Peide
    Saejung, Satit
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [50] Sturm theory with applications in geometry and classical mechanics
    Vivina L. Barutello
    Daniel Offin
    Alessandro Portaluri
    Li Wu
    Mathematische Zeitschrift, 2021, 299 : 257 - 297