Sugar beet cellulose nanofibril-reinforced composites

被引:0
|
作者
Johannes Leitner
Barbara Hinterstoisser
Marnik Wastyn
Jozef Keckes
Wolfgang Gindl
机构
[1] BOKU – University of Natural Resources and Applied Life Sciences,Department of Materials Science and Process Engineering
[2] Zuckerforschung Tulln GmbH,Erich Schmid Institute of Materials Science
[3] University of Leoben,undefined
来源
Cellulose | 2007年 / 14卷
关键词
Cellulose composites; Mechanical properties; Nanofibrils; Sugar beet cellulose;
D O I
暂无
中图分类号
学科分类号
摘要
Cellulose was isolated from sugar beet chips, a by-product of sugar production, by wet chemistry. Further processing of the cellulose with a high-pressure homogeniser led to the disruption of cell walls into nanofibrils. Cellulose sheets obtained by casting and slow evaporation of water showed higher strength and stiffness when homogenised cellulose was used compared to unhomogenised cellulose. These cellulose sheets showed significantly better mechanical performance than Kraft paper tested for reference. The addition of cellulose nanofibrils to a polyvinyl alcohol and a phenol-formaldehyde matrix, respectively, demonstrated excellent reinforcement properties. The best mechanical performance was achieved for a composite with a phenol-formaldehyde resin content of 10%, which showed a tensile strength of 127 MPa, a modulus of elasticity of 9.5 GPa, and an elongation at break of 2.9%.
引用
收藏
页码:419 / 425
页数:6
相关论文
共 50 条
  • [41] Use of sugar beet cellulose nanofibers for paper coating
    Fadel, Shaimaa M. M.
    Abou-Elseoud, Wafaa S. S.
    Hassan, Enas A. A.
    Ibrahim, Saber
    Hassan, Mohammad L. L.
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 180
  • [42] Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications
    Willgert, M.
    Leijonmarck, S.
    Lindbergh, G.
    Malmstrom, E.
    Johansson, M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (33) : 13556 - 13564
  • [43] The Sugar Beet and Beet Sugar
    不详
    AMERICAN ECONOMIC REVIEW, 1912, 2 (01): : 94 - 94
  • [44] Tough cellulose reinforced composites
    Bulota, Mindaugas
    Hughes, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [45] UV-Induced reduction of graphene oxide in cellulose nanofibril composites
    Pottathara, Y. B.
    Thomas, S.
    Kalarikkal, N.
    Griesser, T.
    Grohens, Y.
    Bobnar, V.
    Finsgar, M.
    Kokol, V.
    Kargl, R.
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (02) : 681 - 688
  • [46] Static and Dynamic Characterization of Cellulose Nanofibril Scaffold-Based Composites
    Qamhia, Issam I.
    Sabo, Ronald C.
    Elhajjar, Rani F.
    BIORESOURCES, 2014, 9 (01): : 381 - 392
  • [47] Cellulose nanofibril/polypropylene composites prepared under elastic kneading conditions
    Niihara, Ken-ichi
    Noguchi, Toru
    Makise, Takahiko
    Kashima, Wataru
    Endo, Morinobu
    Isogai, Akira
    CELLULOSE, 2022, 29 (09) : 4993 - 5006
  • [48] Cellulose nanofibril/polypropylene composites prepared under elastic kneading conditions
    Ken-ichi Niihara
    Toru Noguchi
    Takahiko Makise
    Wataru Kashima
    Morinobu Endo
    Akira Isogai
    Cellulose, 2022, 29 : 4993 - 5006
  • [49] Polystyrene/cellulose nanofibril composites: Fiber dispersion driven by nanoemulsion flocculation
    Felix Carvalho, Antonio Jose
    Trovatti, Eliane
    Casale, Cayque Alvarez
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 272 : 387 - 394
  • [50] Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose
    Togrul, H
    Arslan, N
    CARBOHYDRATE POLYMERS, 2003, 54 (01) : 73 - 82