Multi-class indoor semantic segmentation with deep structured model

被引:0
|
作者
Chuanxia Zheng
Jianhua Wang
Weihai Chen
Xingming Wu
机构
[1] Beihang University,School of Automation Science and Electrical Engineering
来源
The Visual Computer | 2018年 / 34卷
关键词
Semantic segmentation; Scene classification; Convolutional neural network; Graph-RNN; Conditional random field;
D O I
暂无
中图分类号
学科分类号
摘要
Indoor semantic segmentation plays a critical role in many applications, such as intelligent robots. However, multi-class recognition is still challenging, especially for pixel-level indoor semantic labeling. In this paper, a novel deep structured model that combines the strengths of the widely used convolutional neural networks (CNNs) and recurrent neural networks (RNNs) is proposed. We first present a multi-information fusion model that utilizes the scene category information to fine-tune the fully convolutional network. Then, to refine the coarse outputs of CNN, the RNN is applied to the final CNN layer so that we can build an end-to-end trainable system. This Graph-RNN is transformed from a conditional random field based on superpixel segmentation graphical modeling that can utilize flexible contextual information of different neighboring regions. The experimental results on the recent large SUN RGB-D dataset demonstrate that the proposed model outperforms existing state-of-the-art methods on the challenging 40 dominant classes task (40.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40.8\%$$\end{document} mean IU accuracy and 69.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$69.1\%$$\end{document} pixel accuracy). We also evaluate our model on the public NYU depth V2 dataset and achieve remarkable performance.
引用
收藏
页码:735 / 747
页数:12
相关论文
共 50 条
  • [31] Multi-Class Deep Boosting
    Kuznetsov, Vitaly
    Mohri, Mehryar
    Syed, Umar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [32] Flame and Smoke Semantic Dataset: Indoor Fire Detection with Deep Semantic Segmentation Model
    Hou, Feifei
    Rui, Xiyue
    Chen, Yuanheng
    Fan, Xinyu
    ELECTRONICS, 2023, 12 (18)
  • [33] Deep Multi-Magnification Networks for multi-class breast cancer image segmentation
    Ho, David Joon
    Yarlagadda, Dig V. K.
    D'Alfonso, Timothy M.
    Hanna, Matthew G.
    Grabenstetter, Anne
    Ntiamoah, Peter
    Brogi, Edi
    Tan, Lee K.
    Fuchs, Thomas J.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 88
  • [34] CLASPPNet: A Cross-Layer Multi-class Lane Semantic Segmentation Model Fused with Lane Detection Module
    Huang, Chao
    Wang, Zhiguang
    Fan, Yongnian
    Liu, Kai
    Lu, Qiang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 128 - 139
  • [35] MULTI-CLASS BRAIN TUMOR CLASSIFICATION AND SEGMENTATION USING HYBRID DEEP LEARNING NETWORK (HDLN) MODEL
    Kumar, Parasa Rishi
    Bonthu, Kavya
    Meghana, Boyapati
    Vani, Koneru Suvarna
    Chakrabarti, Prasun
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2023, 24 (01): : 69 - 80
  • [36] Multi-class Semantic Segmentation of Tooth Pathologies and Anatomical Structures on Bitewing and Periapical Radiographs
    Sarmiento, James-Andrew
    Chen, Liushifeng
    Naval, Prospero, Jr.
    2023 18TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND APPLICATIONS, MVA, 2023,
  • [37] EFFICIENT MULTI-CLASS SEMANTIC SEGMENTATION OF HIGH RESOLUTION AERIAL IMAGERY WITH DILATED LINKNET
    Zhu, Qingtian
    Zheng, Yumin
    Jiang, Yulai
    Yang, Junli
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1065 - 1068
  • [38] Multi-Class Multi-Scale Series Contextual Model for Image Segmentation
    Seyedhosseini, Mojtaba
    Tasdizen, Tolga
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (11) : 4486 - 4496
  • [39] Multi-class semantic cell segmentation and classification of aplasia in bone marrow histology images
    van Eekelen, Leander
    Pinckaers, Hans
    Hebeda, Konnie M.
    Litjens, Geert
    MEDICAL IMAGING 2020: DIGITAL PATHOLOGY, 2021, 11320
  • [40] MIS-Net: A deep learning-based multi-class segmentation model for CT images
    Li, Huawei
    Wang, Changying
    PLOS ONE, 2024, 19 (03):