Characterization of Biaxial Stretch as an In Vitro Model of Traumatic Brain Injury to the Blood-Brain Barrier

被引:0
|
作者
Hector Rosas-Hernandez
Elvis Cuevas
Claudia Escudero-Lourdes
Susan M. Lantz
Nancy P. Gomez-Crisostomo
Nasya M. Sturdivant
Kartik Balachandran
Syed Z. Imam
William Slikker
Merle G. Paule
Syed F. Ali
机构
[1] National Center for Toxicological Research/FDA,Neurochemistry Laboratory, Division of Neurotoxicology
[2] Universidad Autonoma de San Luis Potosi,Facultad de Ciencias Quimicas
[3] Universidad Autonoma Juarez Tabasco,Department of Biomedical Engineering
[4] University of Arkansas,undefined
来源
Molecular Neurobiology | 2018年 / 55卷
关键词
Biaxial stretch; Blood-brain barrier; Traumatic brain injury; In vitro models;
D O I
暂无
中图分类号
学科分类号
摘要
Traumatic brain injury (TBI) is one of the major causes of disability in the USA. It occurs when external mechanical forces induce brain damage that causes deformation of brain tissue. TBI is also associated with alterations of the blood-brain barrier (BBB). Using primary rat brain microvascular endothelial cells as an in vitro BBB model, the effects of biaxial stretch were characterized at 5, 10, 15, 25, and 50% deformation using a commercially available system. The results were compared to the effects of mild and moderate TBI in vivo, induced by the weight-drop method in mice. In vitro, live/dead cells, lactate dehydrogenase (LDH) release, caspase 3/7 staining, and tight junction (TJ) protein expression were evaluated 24 h after a single stretch episode. In vivo, Evans blue extravasation, serum levels of S100β, and TJ protein expression were evaluated. Stretch induced a deformation-dependent increase in LDH release, cell death, and activation of caspase 3/7, suggesting the induction of apoptosis. Interestingly, low magnitudes of deformation increased the expression of TJ proteins, likely in an attempt to compensate for stretch damage. High magnitudes of deformation decreased the expression of TJ proteins, suggesting that the damage was too severe to counteract. In vivo, mild TBI did not affect BBB permeability or the expression of TJ proteins. However, moderate TBI significantly increased BBB permeability and decreased the expression of these proteins, similar to the results obtained with a high magnitude deformation. These data support the use biaxial stretch as valuable tool in the study of TBI in vitro.
引用
收藏
页码:258 / 266
页数:8
相关论文
共 50 条
  • [21] Pediatric Traumatic Brain Injury and Microvascular Blood-Brain Barrier Pathology
    Fullerton, Josie L.
    Hay, Jennifer
    Bryant-Craig, Charlotte
    Atkinson, Josephine
    Smith, Douglas H.
    Stewart, William
    JAMA NETWORK OPEN, 2024, 7 (11)
  • [22] Differential Disruption of Blood-Brain Barrier in Severe Traumatic Brain Injury
    Saw, Melanie M.
    Chamberlain, Jenny
    Barr, Michelle
    Morgan, Matt P. G.
    Burnett, John R.
    Ho, Kwok M.
    NEUROCRITICAL CARE, 2014, 20 (02) : 209 - 216
  • [23] Meningeal blood-brain barrier disruption in acute traumatic brain injury
    Turtzo, Lisa Christine
    Jikaria, Neekita
    Cota, Martin R.
    Williford, Joshua P.
    Uche, Victoria
    Davis, Tara
    MacLaren, Judy
    Moses, Anita D.
    Parikh, Gunjan
    Castro, Marcelo A.
    Pham, Dzung L.
    Butman, John A.
    Latour, Lawrence L.
    BRAIN COMMUNICATIONS, 2020, 2 (02)
  • [24] IMAGING BLOOD-BRAIN BARRIER DYSFUNCTION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY
    Milikovsky, D. Z.
    Rosenbach, D.
    Weissberg, I.
    Elazari, N.
    Lublinsky, S.
    Kamintsky, L.
    Friedman, A.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2016, 36 : 263 - 264
  • [25] Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury
    Shlosberg, Dan
    Benifla, Mony
    Kaufer, Daniela
    Friedman, Alon
    NATURE REVIEWS NEUROLOGY, 2010, 6 (07) : 393 - 403
  • [26] DISRUPTION OF BLOOD-BRAIN BARRIER IN A RAT MODEL OF BLAST-INDUCED TRAUMATIC BRAIN INJURY
    Gu, Ming
    Chen, Ye
    Abutarboush, Rania
    Kawoos, Usmah
    Goodrich, Samantha
    Goforth, Carl
    Stone, James
    Ahlers, Stephen
    JOURNAL OF NEUROTRAUMA, 2019, 36 (13) : A40 - A40
  • [27] A dynamic model of the blood-brain barrier ''in vitro''
    Stanness, KA
    Guatteo, E
    Janigro, D
    NEUROTOXICOLOGY, 1996, 17 (02) : 481 - 496
  • [28] Advances of Blood-brain Barrier Model In Vitro
    Lin Lan
    Sun De-Qun
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2019, 46 (10) : 966 - 975
  • [29] A useful in vitro blood-brain barrier model
    Hurst, RD
    NEUROREPORT, 2000, 11 (07) : L1 - L2
  • [30] Fucoxanthin ameliorates traumatic brain injury by suppressing the blood-brain barrier disruption
    Zhang, Li
    Hu, Zhigang
    Bai, Wanshan
    Peng, Yaonan
    Lin, Yixing
    Cong, Zixiang
    ISCIENCE, 2023, 26 (11)