The Number of Maximal Independent Sets in the Hamming Cube

被引:0
|
作者
Jeff Kahn
Jinyoung Park
机构
[1] Rutgers University Hill Center for the Mathematical Sciences,Department of Mathematics
[2] Stanford University,Department of Mathematics
来源
Combinatorica | 2022年 / 42卷
关键词
05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let Qn be the n-dimensional Hamming cube and N = 2n. We prove that the number of maximal independent sets in Qn is asymptotically 2n2N/4,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n{2^{N/4}},$$\end{document} as was conjectured by Ilinca and the first author in connection with a question of Duffus, Frankl and Rödl.
引用
收藏
页码:853 / 880
页数:27
相关论文
共 50 条
  • [21] Trees with a given number of leaves and the maximal number of maximum independent sets
    Taletskii, Dmitriy S.
    Malyshev, Dmitriy S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2021, 31 (02): : 135 - 144
  • [22] The number of 4-colorings of the Hamming cube
    Jeff Kahn
    Jinyoung Park
    Israel Journal of Mathematics, 2020, 236 : 629 - 649
  • [23] The Number of Colorings of the Middle Layers of the Hamming Cube
    Li, Lina
    Mckinley, Gweneth
    Park, Jinyoung
    COMBINATORICA, 2025, 45 (01)
  • [24] The Number of 4-Colorings of the Hamming Cube
    Kahn, Jeff
    Park, Jinyoung
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 236 (02) : 629 - 649
  • [25] The second largest number of maximal independent sets in twinkle graphs
    Lin, Jenq-Jong
    Jou, Min-Jen
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 113 : 31 - 48
  • [26] THE NUMBER OF MAXIMAL INDEPENDENT SETS IN TRIANGLE-FREE GRAPHS
    HUJTER, M
    TUZA, Z
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (02) : 284 - 288
  • [27] On the number of maximal independent sets in minimum colorings of split graphs
    Bresar, Bostjan
    Movarraei, Nazanin
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 352 - 356
  • [28] Trees with the second and third largest number of maximal independent sets
    Jin, Zemin
    Yan, Sherry H. F.
    ARS COMBINATORIA, 2009, 93 : 341 - 351
  • [29] The maximum number of maximal independent sets in unicyclic connected graphs
    Koh, K. M.
    Goh, C. Y.
    Dong, F. M.
    DISCRETE MATHEMATICS, 2008, 308 (17) : 3761 - 3769
  • [30] Approximate the chromatic number of a graph using maximal independent sets
    Guzman-Ponce, Angelica
    Raymundo Marcial-Romero, J.
    De Ita, Guillermo
    Hernandez, Jose A.
    2016 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND COMPUTERS (CONIELECOMP), 2016, : 19 - 24