Analyzing microstructure relationships in porous copper using a multi-method machine learning-based approach

被引:4
|
作者
Wijaya, Andi [1 ]
Wagner, Julian [1 ]
Sartory, Bernhard [1 ]
Brunner, Roland [1 ]
机构
[1] Leoben Forsch GmbH, Mat Ctr, Leoben, Austria
关键词
REGRESSION ANALYSIS; RECONSTRUCTION; SEGMENTATION; FIB/SEM;
D O I
10.1038/s43246-024-00493-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction of material properties from a given microstructure and its reverse engineering displays an essential ingredient for accelerated material design. However, a comprehensive methodology to uncover the processing-structure-property relationship is still lacking. Herein, we develop a methodology capable of understanding this relationship for differently processed porous materials. We utilize a multi-method machine learning approach incorporating tomographic image data acquisition, segmentation, microstructure feature extraction, feature importance analysis and synthetic microstructure reconstruction. Enhanced segmentation with an accuracy of about 95% based on an efficient annotation technique provides the basis for accurate microstructure quantification, prediction and understanding of the correlation of the extracted microstructure features and electrical conductivity. We show that a diffusion probabilistic model superior to a generative adversarial network model, provides synthetic microstructure images including physical information in agreement with real data, an essential step to predicting properties of unseen conditions. Material properties prediction from a given microstructure is important for accelerated design but a comprehensive methodology is lacking. Here, a multi-method machine learning approach is utilized to understand the processing-structure-property relationship for differently processed porous materials.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Hybrid Machine Learning-Based Approach for Anomaly Detection using Apache Spark
    Chliah, Hanane
    Battou, Amal
    Hadj, Maryem Ait el
    Laoufi, Adil
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 870 - 878
  • [42] MACHINE LEARNING-BASED APPROACH FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING MULTIMODAL DATA
    Ma, Xianping
    Pun, Man-On
    Liu, Ming
    Wang, Yang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5174 - 5177
  • [43] Characterization of Suboxic Groundwater Colloids Using a Multi-method Approach
    Lapworth, Dan J.
    Stolpe, Bjoern
    Williams, Peter J.
    Gooddy, Daren C.
    Lead, Jamie R.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (06) : 2554 - 2561
  • [44] A machine learning-based approach for mapping leachate contamination using geoelectrical methods
    Piegari, Ester
    De Donno, Giorgio
    Melegari, Davide
    Paoletti, Valeria
    WASTE MANAGEMENT, 2023, 157 : 121 - 129
  • [45] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [46] Machine Learning-Based Approach for Fake News Detection
    Gururaj H.L.
    Lakshmi H.
    Soundarya B.C.
    Flammini F.
    Janhavi V.
    Journal of ICT Standardization, 2022, 10 (04): : 509 - 530
  • [47] A Machine Learning-Based Approach to Synthesize Multilayer Metasurfaces
    Naseri, Parinaz
    Hum, Sean, V
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 933 - 934
  • [48] Subtyping of hepatocellular adenoma: a machine learning-based approach
    Yongjun Liu
    Yao-Zhong Liu
    Lifu Sun
    Yoh Zen
    Chie Inomoto
    Matthew M. Yeh
    Virchows Archiv, 2022, 481 : 49 - 61
  • [49] A Machine Learning-Based Probabilistic Approach for Irrigation Scheduling
    Srivastava, Shivendra
    Kumar, Nishant
    Malakar, Arindam
    Choudhury, Sruti Das
    Ray, Chittaranjan
    Roy, Tirthankar
    WATER RESOURCES MANAGEMENT, 2024, 38 (05) : 1639 - 1653
  • [50] Machine Learning-Based Approach for the Gambling Problem Identification
    Kozak, Jan
    Probierz, Barbara
    Juszczuk, Przemyslaw
    Dziczkowski, Grzegorz
    Jach, Tomasz
    Stefanski, Piotr
    Glowania, Szymon
    Hrabia, Anita
    Wolek, Gabriel
    Sznapka, Wojciech
    Swierk, Lukasz
    Joniec, Natalia
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2025,