Super congruences and Euler numbers

被引:0
|
作者
Zhi-Wei Sun
机构
[1] Nanjing University,Department of Mathematics
来源
Science China Mathematics | 2011年 / 54卷
关键词
central binomial coefficients; super congruences; Euler numbers; 11B65; 05A10; 05A19; 11A07; 11B68; 11E25; 11F20; 11M06; 11S99; 33C20;
D O I
暂无
中图分类号
学科分类号
摘要
Let p > 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{gathered} \sum\limits_{k = 0}^{p - 1} {\frac{{\left( {_k^{2k} } \right)}} {{2^k }}} \equiv \left( { - 1} \right)^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} - p^2 E_{p - 3} \left( {\bmod p^3 } \right), \hfill \\ \sum\limits_{k = 1}^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} {\frac{{\left( {_k^{2k} } \right)}} {k}} \equiv \left( { - 1} \right)^{{{\left( {p + 1} \right)} \mathord{\left/ {\vphantom {{\left( {p + 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \frac{8} {3}pE_{p - 3} \left( {\bmod p^2 } \right), \hfill \\ \sum\limits_{k = 0}^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} {\frac{{\left( {_k^{2k} } \right)^2 }} {{16^k }}} \equiv \left( { - 1} \right)^{{{\left( {p - 1} \right)} \mathord{\left/ {\vphantom {{\left( {p - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} + p^2 E_{p - 3} \left( {\bmod p^3 } \right), \hfill \\ \end{gathered}$$\end{document} where E0,E1,E2, ... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π−2 and the constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K: = \sum\nolimits_{k = 1}^\infty {{{\left( {\tfrac{k} {3}} \right)} \mathord{\left/ {\vphantom {{\left( {\tfrac{k} {3}} \right)} {k^2 }}} \right. \kern-\nulldelimiterspace} {k^2 }}}$$\end{document} (with (−) the Jacobi symbol), two of which are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{k = 1}^\infty {\frac{{\left( {10k - 3} \right)8^k }} {{k^3 \left( {_k^{2k} } \right)^2 \left( {_k^{3k} } \right)}} = \frac{{\pi ^2 }} {2}} and \sum\limits_{k = 1}^\infty {\frac{{\left( {15k - 4} \right)\left( { - 27} \right)^{k - 1} }} {{k^3 \left( {_k^{2k} } \right)^2 \left( {_k^{3k} } \right)}} = K.}$$\end{document}
引用
收藏
页码:2509 / 2535
页数:26
相关论文
共 50 条
  • [31] Congruences for Franel numbers
    Sun, Zhi-Wei
    ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) : 524 - 535
  • [32] CONGRUENCES FOR GENOCCHI NUMBERS
    GANDHI, JM
    DUKE MATHEMATICAL JOURNAL, 1964, 31 (03) : 519 - &
  • [33] Congruences for the Fishburn numbers
    Andrews, George E.
    Sellers, James A.
    JOURNAL OF NUMBER THEORY, 2016, 161 : 298 - 310
  • [34] Generalizations of Euler Numbers and Euler Numbers of Higher Order
    LUO Qiu-ming
    Department of Applied Mathematics and Information Science
    数学季刊, 2005, (01) : 54 - 58
  • [35] Some congruences on Delannoy numbers and Schroder numbers
    Liu, Ji-Cai
    Li, Long
    Wang, Su-Dan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (07) : 2035 - 2041
  • [36] Congruences and exponential sums with the Euler function
    Banks, WD
    Shparlinski, IE
    HIGH PRIMES AND MISDEMEANOURS: LECTURES IN HONOUR OF THE 60TH BIRTHDAY OF HUGH COWIE WILLIAMS, 2004, 41 : 49 - 59
  • [37] CONGRUENCES FOR THE STIRLING NUMBERS AND ASSOCIATED STIRLING NUMBERS
    HOWARD, FT
    ACTA ARITHMETICA, 1990, 55 (01) : 29 - 41
  • [38] Euler characteristic and congruences of elliptic curves
    Shekhar, Sudhanshu
    Sujatha, R.
    MUENSTER JOURNAL OF MATHEMATICS, 2014, 7 (01): : 327 - 343
  • [39] Congruences for the coefficients of the powers of the Euler Product
    Julia Q. D. Du
    Edward Y. S. Liu
    Jack C. D. Zhao
    The Ramanujan Journal, 2020, 52 : 393 - 420
  • [40] Eisenstein congruences among Euler systems
    Rivero, O.
    Rotger, V.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 425 - 446