Existence of Solution for a Singular Elliptic Equation of Kirchhoff Type

被引:0
|
作者
Qingwei Li
Wenjie Gao
Yuzhu Han
机构
[1] Dalian Maritime University,Department of Mathematics
[2] Jilin University,School of Mathematics
来源
关键词
Nonlocal; singular; existence; uniqueness; 35K55; 35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We study both the existence and uniqueness of nonnegative solution to a singular elliptic problem of Kirchhoff type, whose model is: -B12∫Ω|∇u|2dxΔu=h(x)uγ,x∈Ω,u>0,x∈Ω,u=0,x∈∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -B\left( \dfrac{1}{2}\displaystyle \int _\Omega |\nabla u|^2\mathrm {d}x\right) \Delta u=\dfrac{h(x)}{u^\gamma }, &{}\quad x\in \Omega ,\\ u>0, &{}\quad x\in \Omega ,\\ u=0, &{}\quad x\in \partial \Omega , \end{array}\right. } \end{aligned}$$\end{document}where Ω⊂Rn(n≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^n(n\ge 1)$$\end{document} is a smooth bounded domain, γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >1$$\end{document}, h∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in L^1(\Omega )$$\end{document} is positive (i.e., h(x)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(x)>0$$\end{document} a.e. in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}), B:R+→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B : \mathbb {R}^+\rightarrow \mathbb {R}^+$$\end{document} is a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-continuous function with positive lower bound. A necessary and sufficient condition will be given for the existence of weak solution of the general nonlocal singular elliptic with strong singularity. In addition, we prove that the solution is unique under some suitable conditions.
引用
收藏
相关论文
共 50 条
  • [41] Uniqueness of singular solution of semilinear elliptic equation
    Lai, Baishun
    Luo, Qing
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (05): : 583 - 591
  • [42] CRITICAL KIRCHHOFF-TYPE EQUATION WITH SINGULAR POTENTIAL
    Su, Yu
    Liu, Senli
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 611 - 636
  • [43] Positive solutions for a quasilinear elliptic equation of Kirchhoff type
    Alves, CO
    Corrêa, FJSA
    Ma, TF
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) : 85 - 93
  • [44] The existence and nonexistence of positive solutions for a singular Kirchhoff equation with convection term
    Qiu, Xiaohui
    Yan, Baoqiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (10) : 10581 - 10601
  • [45] The existence and asymptotic behavior of normalized solutions for Kirchhoff equation with singular potential
    Wu, Yuanda
    Zeng, Xiaoyu
    Zhang, Yimin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [46] Existence of a ground state solution for a class of singular elliptic equation without the A-R condition
    Liu, Yanjun
    Qi, Shijie
    Zhao, Peihao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 : 233 - 245
  • [47] Existence of solution for a singular elliptic system with convection terms
    Correa, Francisco Julio S. A.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    Muhassua, Sabado Saide
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 66
  • [48] Existence of solutions for fourth order elliptic equations of Kirchhoff type
    Wang, Fanglei
    Avci, Mustafa
    An, Yukun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 140 - 146
  • [49] Some existence results for an elliptic equation of Kirchhoff-type with changing sign data and a logarithmic nonlinearity
    Bouizem, Youcef
    Boulaaras, Salah
    Djebbar, Bachir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (07) : 2465 - 2474
  • [50] Existence of three solutions for Kirchhoff nonlocal operators of elliptic type
    Nyamoradi, Nemat
    MATHEMATICAL COMMUNICATIONS, 2013, 18 (02) : 489 - 502