On the AC Spectrum of One-dimensional Random Schrödinger Operators with Matrix-valued Potentials

被引:0
|
作者
Richard Froese
David Hasler
Wolfgang Spitzer
机构
[1] University of British Columbia,Department of Mathematics
[2] College of William & Mary,Department of Mathematics
[3] FernUniversität Hagen,Fakultät für Mathematik und Informatik
关键词
Random Schrödinger operators; Spectral theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider discrete one-dimensional random Schrödinger operators with decaying matrix-valued, independent potentials. We show that if the ℓ2-norm of this potential has finite expectation value with respect to the product measure then almost surely the Schrödinger operator has an interval of purely absolutely continuous (ac) spectrum. We apply this result to Schrödinger operators on a strip. This work provides a new proof and generalizes a result obtained by Delyon et al. (Ann. Inst. H. Poincaré Phys. Théor. 42(3):283–309, 1985).
引用
收藏
页码:219 / 233
页数:14
相关论文
共 50 条
  • [21] Discrete and Embedded Eigenvalues for One-Dimensional Schrödinger Operators
    Christian Remling
    Communications in Mathematical Physics, 2007, 271 : 275 - 287
  • [22] Schrödinger transmission through one-dimensional complex potentials
    Ahmed, Z.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 427161 - 427164
  • [23] Quantitative observability for one-dimensional Schrödinger equations with potentials
    Su, Pei
    Sun, Chenmin
    Yuan, Xu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (02)
  • [24] Semiclassical Low Energy Scattering for One-Dimensional Schrödinger Operators with Exponentially Decaying Potentials
    Ovidiu Costin
    Roland Donninger
    Wilhelm Schlag
    Saleh Tanveer
    Annales Henri Poincaré, 2012, 13 : 1371 - 1426
  • [25] The local Borg-Marchenko uniqueness theorem for matrix-valued Schrödinger operators with locally smooth at the right endpoint potentials
    Li, Tiezheng
    Wei, Guangsheng
    APPLICABLE ANALYSIS, 2024, 103 (12) : 2213 - 2223
  • [26] Schrödinger Operators with Distributional Matrix Potentials
    V. N. Moliboga
    Ukrainian Mathematical Journal, 2015, 67 : 748 - 763
  • [27] Dissipative Schrödinger Operators with Matrix Potentials
    B.P. Allahverdiev
    Potential Analysis, 2004, 20 : 303 - 315
  • [28] Lower Transport Bounds for One-dimensional Continuum Schrödinger Operators
    David Damanik
    Daniel Lenz
    Günter Stolz
    Mathematische Annalen, 2006, 336 : 361 - 389
  • [29] Inverse scattering theory for one-dimensional Schrödinger operators with steplike finite-gap potentials
    Anne Boutet de Monvel
    Iryna Egorova
    Gerald Teschl
    Journal d'Analyse Mathématique, 2008, 106 : 271 - 316
  • [30] Reflection Probabilities of One-Dimensional Schrödinger Operators and Scattering Theory
    Benjamin Landon
    Annalisa Panati
    Jane Panangaden
    Justine Zwicker
    Annales Henri Poincaré, 2017, 18 : 2075 - 2085