The Semi-Classical Approximation for Modular Operads

被引:0
|
作者
E. Getzler
机构
[1] Max-Planck-Institut für Mathematik,
[2] Gottfried-Claren-Str. 26,undefined
[3] D-53225 Bonn,undefined
[4] Germany.,undefined
来源
关键词
Betti Number; Betti; Smooth Point; Stable Curf; Modular Operads;
D O I
暂无
中图分类号
学科分类号
摘要
We study the contribution of one-loop graphs (the semi-classical expansion) problem in the setting of modular operads. As an application, we calculate the Betti numbers of the Deligne-Mumford-Knudsen moduli spaces of stable curves of genus 1 with n marked smooth points.
引用
收藏
页码:481 / 492
页数:11
相关论文
共 50 条
  • [41] Quantum tunnelling in charged black holes beyond the semi-classical approximation
    Lin, Kai
    Yang, Shu-Zheng
    EPL, 2009, 86 (02)
  • [42] Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis
    Grothaus, M
    Streit, L
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (03) : 381 - 405
  • [43] A UNIFORM SEMI-CLASSICAL SUDDEN APPROXIMATION FOR ROTATIONALLY INELASTIC-SCATTERING
    KORSCH, HJ
    SCHINKE, R
    JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (03): : 1222 - 1232
  • [44] Semi-classical Green functions
    Anikin, A.
    Dobrokhotov, S.
    Nazaikinskii, V.
    Rouleux, M.
    2018 DAYS ON DIFFRACTION (DD), 2018, : 17 - 23
  • [45] Semi-classical dispersive estimates
    Fernando Cardoso
    Claudio Cuevas
    Georgi Vodev
    Mathematische Zeitschrift, 2014, 278 : 251 - 277
  • [46] A Semi-classical calculus of correlations
    de Verdiere, Yves Colin
    COMPTES RENDUS GEOSCIENCE, 2011, 343 (8-9) : 496 - 501
  • [47] SEMI-CLASSICAL TUNNELING CALCULATIONS
    GARRETT, BC
    TRUHLAR, DG
    JOURNAL OF PHYSICAL CHEMISTRY, 1979, 83 (22): : 2921 - 2926
  • [48] Semi-classical wormholes are unstable
    Buniy, RV
    Hsu, SDH
    PHYSICS LETTERS B, 2006, 632 (01) : 127 - 130
  • [49] Semi-classical signal analysis
    Laleg-Kirati, Taous-Meriem
    Crepeau, Emmanuelle
    Sorine, Michel
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2013, 25 (01) : 37 - 61
  • [50] Semi-classical dynamical triangulations
    Ambjorn, J.
    Budd, T. G.
    PHYSICS LETTERS B, 2012, 718 (01) : 200 - 204