A novel battery thermal management model in hybrid vehicles using Ranque–Hilsch vortex tube

被引:0
|
作者
Ahmad Dawahdeh
Moh’d Al-Nimr
机构
[1] Jordan University of Science and Technology,
关键词
Electric vehicles; Hybrid vehicles; Batteries; RHVT; Thermal management;
D O I
暂无
中图分类号
学科分类号
摘要
The thermal management of the batteries in electrical and hybrid vehicles is a major concern for operation safety, battery life, and performance. In the current research, the temperature of the battery is tracked for 10,000 s of operation while using a Ranque–Hilsch vortex tube (RHVT) for the thermal management of the battery. An analytical model is developed and validated to study the impact of the heat generated per unit volume from the battery, the mass ratio for the cold air at the outlet to the total air at the inlet (x), entered air pressure, temperature, and mass flow rate. The peak temperature of the battery can be reduced by increasing the pressure and mass flow rate of the air at the inlet, decreasing the temperature of the air at the inlet, and using four RHVTs instead of a single RHVT. The proposed system significantly decreased the maximum temperature of the battery to 48.12 °C, compared to the battery thermal management method of using direct air, which resulted in a temperature of 75.73 °C. Furthermore, employing four RHVTs to cool the battery further reduced the maximum temperature from 48.12 to 11.23 °C, demonstrating a substantial improvement compared to utilizing a single RHVT. Utilizing the RHVT provides a good solution for the battery thermal management problem because it is cheap, small, and reduces the temperature of the air rapidly.
引用
收藏
页码:11349 / 11359
页数:10
相关论文
共 50 条
  • [21] Performance characteristics of a microscale Ranque-Hilsch vortex tube
    Hamoudi, A. F.
    Fartaj, A.
    Rankin, G. W.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (10): : 1012061 - 1012068
  • [22] Ranque-Hilsch Vortex Tube potential for water desalination
    Stanescu, George
    Defect and Diffusion Forum, 2013, 336 : 147 - 158
  • [23] Ranque-Hilsch vortex tube thermocycler for DNA amplification
    Ebmeier, R
    Whitney, S
    Alugupally, S
    Nelson, M
    Padhye, N
    Gogos, G
    Viljoen, HJ
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2004, 32 (05) : 567 - 570
  • [24] Experimental study on a simple Ranque-Hilsch vortex tube
    Gao, CM
    Bosschaart, KJ
    Zeegers, JCH
    de Waele, ATAM
    CRYOGENICS, 2005, 45 (03) : 173 - 183
  • [25] Maxwell's Demon in the Ranque-Hilsch Vortex Tube
    Liew, R.
    Zeegers, J. C. H.
    Kuerten, J. G. M.
    Michalek, W. R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (05)
  • [26] Exergy analysis of a hot cascade type Ranque-Hilsch vortex tube using turbulence model
    Bej, Nilotpala
    Sinhamahapatra, K. P.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 45 : 13 - 24
  • [27] Numerical Investigation of a Ranque-Hilsch Vortex Tube using a Three-Equation Turbulence Model
    Niknam, Pouriya H.
    Mortaheb, H. R.
    Mokhtarani, B.
    CHEMICAL ENGINEERING COMMUNICATIONS, 2017, 204 (03) : 327 - 336
  • [28] Exergy analysis of a hot cascade type Ranque-Hilsch vortex tube using turbulence model
    Bej, Nilotpala
    Sinhamahapatra, K.P.
    Energy Economics, 2014, 45 : 13 - 24
  • [29] Using artificial neural network for predicting performance of the Ranque-Hilsch vortex tube
    Korkmaz, Murat Eray
    Gumusel, Levent
    Markal, Burak
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (06): : 1690 - 1696
  • [30] Species separation in Ranque-Hilsch vortex tube using air as working fluid
    M. Chatterjee
    S. Mukhopadhyay
    P. K. Vijayan
    Heat and Mass Transfer, 2018, 54 : 3559 - 3572