In his lost notebook, Ramanujan listed five identities related to the false theta function: f(q)=∑n=0∞(-1)nqn(n+1)/2.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} f(q)=\sum _{n=0}^\infty (-1)^nq^{n(n+1)/2}. \end{aligned}$$\end{document}A new combinatorial interpretation and a proof of one of these identities are given. The methods of the proof allow for new multivariate generalizations of this identity. Additionally, the same technique can be used to obtain a combinatorial interpretation of another one of the identities.
机构:
Penn State Univ, Dept Math, Number Theory Grp, University Pk, PA 16802 USAPenn State Univ, Dept Math, Number Theory Grp, University Pk, PA 16802 USA