A Bijective Proof of a False Theta Function Identity from Ramanujan’s Lost Notebook

被引:0
|
作者
Hannah E. Burson
机构
[1] University of Illinois,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Partitions; Overpartitions; False theta functions; Primary 05A17; Secondary 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
In his lost notebook, Ramanujan listed five identities related to the false theta function: f(q)=∑n=0∞(-1)nqn(n+1)/2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(q)=\sum _{n=0}^\infty (-1)^nq^{n(n+1)/2}. \end{aligned}$$\end{document}A new combinatorial interpretation and a proof of one of these identities are given. The methods of the proof allow for new multivariate generalizations of this identity. Additionally, the same technique can be used to obtain a combinatorial interpretation of another one of the identities.
引用
收藏
页码:579 / 588
页数:9
相关论文
共 50 条